RUS  ENG
Full version
JOURNALS // Matematicheskie Voprosy Kriptografii [Mathematical Aspects of Cryptography]

Mat. Vopr. Kriptogr., 2020, Volume 11, Issue 2, Pages 25–42 (Mi mvk319)

Limonnitsa: making Limonnik-3 post-quantum
S. V. Grebnev

References

1. R 1323565.1.004-2017. Standardization recommendations. Key agreement schemes based upon public-key methods, Standartinform, M., 2017 (in Russian)
2. GOST R 34.12-2015. National standard of Russian Federation. Block ciphers, Standartinform, M., 2015 (in Russian)
3. GOST R 34.13-2015. National standard of Russian Federation. Block cipher modes, Standartinform, M., 2015 (in Russian)
4. Biasse J.-F., Jao D., Sankar A., “A quantum algorithm for computing isogenies between supersingular elliptic curves”, INDOCRYPT 2014, Lect. Notes Comput. Sci., 8885, 2014, 428–442  crossref  mathscinet  zmath
5. Canetti R., Krawczyk H., “Analysis of key-exchange protocols and their use for building secure channels”, EUROCRYPT 2001, Lect. Notes Comput. Sci., 2045, 200, 453–474  crossref  mathscinet  zmath
6. Chatterjee S., Menezes A., Ustaoglu B., “A generic variant of NIST's KAS2 key agreement scheme”, Proc. ACISP, Lect. Notes Comput. Sci., 6812, 2011, 353–370  crossref  zmath
7. Costello C., Longa P., Naehrig M., Renes J., Virdia F., Improved classical cryptanalysis of SIKE in practice, Cryptology ePrint Archive, Report 2019/298, 2019
8. De Feo L., Jao D., Plût J., “Towards quantum-resistant cryptosystems from supersingular elliptic curve isogenies”, J. Math. Cryptology, 8:3 (2014), 209-–247  mathscinet  zmath
9. Denisenko D., Marshalko G., Nikitenkova M., Rudskoy V., Shishkin V., “Estimation of Grover's algorithm implementation for searching GOST R 34.10-2015 block cipher keys”, J. Exp. Theor. Phys., 155:4 (2019), 645–653 (in Russian)
10. Diffie W., van Oorschot P., Wiener M., “Authentication and authenticated key exchanges”, Des., Codes Cryptogr., 2, 107–125 \year 1992  crossref  mathscinet
11. Galbraith S., Authenticated key exchange for SIDH, Cryptology ePrint Archive, Report 2018/266, 2018
12. Galbraith S., Petit P., Silva J., Schemes Based On Supersingular Isogeny Problems, Cryptology ePrint Archive, Report 2016/1154, 2016
13. Galbraith S., Petit P., Shani B., Yan Bo Ti, On the Security of Supersingular Isogeny Cryptosystem, Cryptology ePrint Archive, Report 2016/859, 2016  mathscinet
14. Grebnev S., “Security properties of Limonnik-3”, Bezopasnost' Informacionnykh Tekhnologii, 26:2 (2019), 6–20 (in Russian)  crossref
15. Jao D., Azarderakhsh R., Campagna M., Costello C., De Feo L., Hess B., Jalali A., Koziel B., LaMacchia B., Longa P., Naehrig M., Renes J., Soukharev V., Urbanik D., Supersingular isogeny key encapsulation, Submission to NIST post-quantum project, 2017 https://sike.org/#nist-submission
16. Jaques S., Schanck J.M., Quantum cryptanalysis in the RAM model: Claw-finding attacks on SIKE, Cryptology ePrint Archive, Report 2019/103, 2019
17. Kirkwood D., Lackey B.C., McVey J., Motley M., Solinas J.A., Tuller D., “Failure is not an option: Standardization issues for post-quantum key agreement”, NIST Workshop on Cybersecurity in a Post-Quantum World, v. 2, 2015
18. Lauter K., Mityagin A., “Security analysis of KEA authenticated key exchange protocol”, PKC 2006, Lect. Notes Comput. Sci., 3958, 2006, 378–394  crossref  mathscinet  zmath
19. Matsumoto T., Takashima Y., Imai H., “On seeking smart public-key distribution systems”, Trans. IECE of Japan, E69:2 (1986), 99–106
20. Matyukhin D., “On some properties of PKI-based key agreement schemes in the context of developing standardized solutions”, Obozr. Prikl. Promyshl. Mathem., 18 (2011), 793–794 (in Russian)
21. Seiichiro T., Claw finding algorithms using quantum walk, 2008, arXiv: 0708.2584
22. Urbanik D., Jao D., SoK: The problem landscape of SIDH, Cryptology ePrint Archive, Report 2018/336, 2018
23. Vélu J., “Isogenies entre courbes elliptiques”, C.R. Acad. Sci. Paris, Ser. A, 273 (1971), 238–241  mathscinet  zmath


© Steklov Math. Inst. of RAS, 2025