|
|
|
References
|
|
|
1. |
Tate J., “Endomorphisms of Abelian varieties over finite fields”, Invent. math., 2:2 (1966), 134—144 |
2. |
Koblitz N., “Hyperelliptic cryptosystems”, J. Cryptology, 1:3 (1989), 139—150 |
3. |
Pila J., “Frobenius maps of Abelian varieties and finding roots of unity in finite fields”, Math. Comput., 55:192 (1990), 745—763 |
4. |
Cantor D. G., “On the analogue of the division polynomials for hyperelliptic curves”, J. reine und angew. Math., 447 (1994), 91—146 |
5. |
Lidl R., Mullen G. L., Turnwald G., Dickson polynomials, Longman Sci. & Tech., Harlow, Essex, England, 1993, 207 pp. |
6. |
Gaudry P., Schost É., “Modular equations for hyperelliptic curves”, Math. Comput., 74:249 (2005), 429—454 |
7. |
Gaudry P., Thomé E., Thériault N., Diem C., “A double large prime variation for small genus hyperelliptic index calculus”, Math. Comput., 76:257 (2007), 475—492 |
8. |
Novoselov S.A., Counting points on hyperelliptic curves of type $y^2 = x^{2g+1} + a x^{g+1} + b x$, 2019, arXiv: 1902.05992 |
9. |
Cantor D. G., “Computing in the Jacobian of a hyperelliptic curve”, Math. Comput., 48:177 (1987), 95—101 |
10. |
Flynn E.V., Yan Bo Ti, Genus two isogeny cryptography, Cryptology ePrint Archive, Report 2019/177 https://eprint.iacr.org/2019/177 \year 2019 |
11. |
Cohen H., Frei G. et al., Handbook of Elliptic and Hyperelliptic Curve Cryptography, Chapman & Hall/CRC, 2005, 848 pp. |