RUS  ENG
Full version
JOURNALS // Matematicheskie Voprosy Kriptografii [Mathematical Aspects of Cryptography]

Mat. Vopr. Kriptogr., 2020, Volume 11, Issue 2, Pages 69–81 (Mi mvk322)

Division polynomials for hyperelliptic curves defined by Dickson polynomials
E. S. Malygina, S. A. Novoselov

References

1. Tate J., “Endomorphisms of Abelian varieties over finite fields”, Invent. math., 2:2 (1966), 134—144  crossref  mathscinet  zmath  adsnasa
2. Koblitz N., “Hyperelliptic cryptosystems”, J. Cryptology, 1:3 (1989), 139—150  crossref  mathscinet  zmath
3. Pila J., “Frobenius maps of Abelian varieties and finding roots of unity in finite fields”, Math. Comput., 55:192 (1990), 745—763  crossref  mathscinet  zmath  adsnasa
4. Cantor D. G., “On the analogue of the division polynomials for hyperelliptic curves”, J. reine und angew. Math., 447 (1994), 91—146  mathscinet
5. Lidl R., Mullen G. L., Turnwald G., Dickson polynomials, Longman Sci. & Tech., Harlow, Essex, England, 1993, 207 pp.  mathscinet  zmath
6. Gaudry P., Schost É., “Modular equations for hyperelliptic curves”, Math. Comput., 74:249 (2005), 429—454  crossref  mathscinet  zmath  adsnasa
7. Gaudry P., Thomé E., Thériault N., Diem C., “A double large prime variation for small genus hyperelliptic index calculus”, Math. Comput., 76:257 (2007), 475—492  crossref  mathscinet  zmath  adsnasa
8. Novoselov S.A., Counting points on hyperelliptic curves of type $y^2 = x^{2g+1} + a x^{g+1} + b x$, 2019, arXiv: 1902.05992  mathscinet  zmath
9. Cantor D. G., “Computing in the Jacobian of a hyperelliptic curve”, Math. Comput., 48:177 (1987), 95—101  crossref  mathscinet  zmath
10. Flynn E.V., Yan Bo Ti, Genus two isogeny cryptography, Cryptology ePrint Archive, Report 2019/177 https://eprint.iacr.org/2019/177 \year 2019  mathscinet
11. Cohen H., Frei G. et al., Handbook of Elliptic and Hyperelliptic Curve Cryptography, Chapman & Hall/CRC, 2005, 848 pp.


© Steklov Math. Inst. of RAS, 2025