|
|
|
References
|
|
|
1. |
Rescorla E., The Transport Layer Security (TLS) Protocol Version 1.3, RFC 8446, 2018 https://www.rfc-editor.org/info/rfc8446 |
2. |
Kaufman C., Hoffman P., Nir Y., Eronen P., Kivinen T., Internet Key Exchange Protocol Version 2 (IKEv2), RFC 7296, 2014 https://www.rfc-editor.org/info/rfc7296 |
3. |
Boneh D., Lynn B., Shacham H., “Short signatures from the Weil pairing”, ASIACRYPT 2001, Lect. Note Comput. Sci., 2248, 2001, 514–532 |
4. |
Patarin J., Courtois N., Goubin L., “FLASH, a fast multivariate signature algorithm”, CT-RSA 2001, Lect. Note Comput. Sci., 2020, 2001, 298–307 |
5. |
Patarin J., Courtois N., Goubin L., “QUARTZ, 128-bit long digital signatures”, CT-RSA 2001, Lect. Note Comput. Sci., 2020, 2001, 282–297 |
6. |
Dubois V., Fouque PA., Shamir A., Stern J., “Practical cryptanalysis of SFLASH”, CRYPTO 2007, Lect. Note Comput. Sci., 4622, 2007, 1–12 |
7. |
Courtois N.T., Daum M., Felke P., “On the security of HFE, HFEv- and Quartz”, PKC 2003, Lect. Note Comput. Sci., 2567, 2003, 337–350 |
8. |
Petzoldt A., Chen MS., Yang BY., Tao C., Ding J., “Design principles for HFEv-based multivariate signature schemes”, ASIACRYPT 2015, Lect. Note Comput. Sci., 9452, 2015, 311–334 |
9. |
Mohamed M.S.E., Petzoldt A., “The shortest signatures ever”, INDOCRYPT 2016, Lect. Note Comput. Sci., 10095, 2016, 61–77 |
10. |
Kipnis A., Patarin J., Goubin L., “Unbalanced Oil and Vinegar signature schemes”, EUROCRYPT'99, Lect. Note Comput. Sci., 1592, 1999, 206–222 |
11. |
Ding J., Schmidt D., “Rainbow, a new multivariable polynomial sgnature scheme”, ACNS 2005, Lect. Note Comput. Sci., 3531, 2005, 164–175 |
12. |
Fersch M., Kiltz E., Poettering B., “On the one-per-message unforgeability of (EC)DSA and its variants”, TCC 2017, Lect. Note Comput. Sci., 10678, 2017, 519–534 |
13. |
Fersch M., Kiltz E., Poettering B., “On the provable security of (EC) DSA signatures”, Proc. 2016 ACM SIGSAC Conf. Comput. and Communic. Security, 2016, 1651–1662 |
14. |
Fersch M., The Provable Security of Elgamal-type Signature Schemes, Diss., Bochum, 2018 |
15. |
Chevalier C., Fouque PA., Pointcheval D., Zimmer S., “Optimal randomness extraction from a Diffie-Hellman element”, EUROCRYPT 2009, Lect. Note Comput. Sci., 5479, 2009, 572–589 |
16. |
GOST R 34.10-2012. Information technology. Cryptographic data security. Signature and verification processes of electronic digital signature. National standard of the Russian Federation, STANDARTINFORM, 2012 (In Russian) |
17. |
GOST 34.10-2018. Information technology. Cryptographic data security. Signature and verification processes of electronic digital signature. Interstate standard, Interstate Council for Standardization, Metrology and Certification (ISC), 2018 (in Russian) |
18. |
ISO/IEC 14888-3:2018, IT Security techniques – Digital signatures with appendix – Part 3: Discrete logarithm based mechanisms – Section 6: Certificate-based mechanisms – 6.9: ECRDSA, 2018 |
19. |
Dolmatov V., Degtyarev A., GOST R 34.10-2012: Digital Signature Algorithm, RFC 7091, 2013 https://www.rfc-editor.org/info/rfc7091 |
20. |
Inoue A., Iwata T., Minematsu K., Poettering B., “Cryptanalysis of OCB2: attacks on authenticity and confidentiality”, CRYPTO 2019, Lect. Note Comput. Sci., 11692, 2019, 3–31 |
21. |
Koblitz N., Menezes A., Critical perspectives on provable security: fifteen years of "Another Look" papers, Cryptology ePrint Archive, Report 2019/1336, https://eprint.iacr.org/2019/1336.pdf, 2019 |
22. |
Paillier P., Vergnaud D., “Discrete-log-based signatures may not be equivalent to discrete log”, ASIACRYPT 2005, Lect. Note Comput. Sci., 3788, 2005, 1–20 |
23. |
Savage J.E., Models of Computation: Exploring the Power of Computing, Addison-Wesley Longman Publishing Co, Boston, 1998 |
24. |
Bellare M., Rogaway P., “Random oracles are practical: A paradigm for designing efficient protocols”, Proc. 1st ACM conf. Comput. and communic. security, 1993, 62–73 |
25. |
Pollard, J.M., “A Monte Carlo method for factorization”, BIT, 15 (1975), 331–334 |
26. |
Zheng Y., “Digital signcryption or how to achieve cost(signature & encryption) $\ll$ cost(signature) + cost(encryption)”, CRYPTO'97, Lect. Note Comput. Sci., 1294, 1997, 165–179 |
27. |
Akhmetzyanova A., Alekseev E., Babueva A., Smyshlyaev S., On methods of shortening ElGamal-type signatures (full version), IACR Cryptology ePrint Archive, 2021/148, https://eprint.iacr.org/2021/148.pdf, 2021 |