RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki

Mat. Zametki, 2006, Volume 80, Issue 3, Pages 339–349 (Mi mzm2819)

Small work-load mode in a queueing system with random nonstationary intensity
E. E. Bashtova

References

1. T. Rolski, “Queues with nonstationary inputs”, Queueing Systems Theory Appl., 5:1–3 (1989), 113–129  crossref  mathscinet  zmath
2. T. Rolski, “Upper bounds for single server queues with doubly stochastic Poisson arrivals”, Math. Oper. Res., 11:3 (1986), 442–450  crossref  mathscinet  zmath
3. N. Bäuerle, T. Rolski, “A monotonicity result for the workload in Markov-modulated queues”, J. Appl. Probab., 35 (1998), 741–747  crossref  mathscinet  zmath
4. R. Szekli, R. L. Disney, S. Hur, “$MR/GI/1$ queues with positive correlated arrival stream”, J. Appl. Probab., 31 (1994), 497–514  crossref  mathscinet  zmath
5. C. Chang, X. Chao, M. Pinedo, “Monotonicity result for queues with doubly stochastic Poisson arrivals: Ross's conjecture”, Adv. in Appl. Probab., 23 (1991), 210–228  crossref  mathscinet  zmath
6. A. A. Borovkov, Veroyatnostnye protsessy v teorii massovogo obsluzhivaniya, Nauka, M., 1972  mathscinet  zmath
7. L. G. Afanaseva, “Stokhasticheskaya ogranichennost tsiklicheskikh sistem obsluzhivaniya”, Problemy ustarevshikh stokhasticheskikh modelei, Trudy seminara VNIISI, 1989
8. L. G. Afanas'eva, E. E. Bashtova, “The queue with periodic double stochastic Poisson input”, Transactions of the XXIV Intern. Sem. on Stab. Probl. for Stoch. Models, Jurmala, 2004


© Steklov Math. Inst. of RAS, 2025