RUS  ENG
Полная версия
ЖУРНАЛЫ // Russian Journal of Nonlinear Dynamics

Rus. J. Nonlin. Dyn., 2023, том 19, номер 1, страницы 125–135 (Mi nd842)

Oscillations in Dynamic Systems with an Entropy Operator
Y. S. Popkov

Список литературы

1. Popkov, Yu. S., “Theory of Dynamic Entropy-Operator Systems and Its Applications”, Autom. Remote Control, 67:6 (2006), 900–926  mathnet  crossref  mathscinet  zmath
2. Popkov, Yu. S., Mathematical Demoeconomy. Integrating Demographic and Economic Approaches, De Gruyter, Berlin, 2014, 500 pp.  mathscinet  zmath
3. Shvetsov, V. I. and Helbing, D., “Macroscopic Dynamics of Multilane Traffic”, Phys. Rev. E, 59:6 (1999), 6328–6339  crossref  mathscinet
4. Gasnikov, A. V., Dorn, Yu. V., Nesterov, Yu. E., and Shpirko, S. V., “On the Three-Stage Version of Stable Dynamic Model of Traffic Flows”, Matem. Model., 26:6 (2014), 34–70 (Russian)  mathnet  zmath
5. Popkov, A. Yu., Popkov, Yu. S., and van Wissen, L., “Positive Dynamic Systems with Entropy Operator: Application to Labour Market Modelling”, Eur. J. Oper. Res., 164:3 (2005), 811–828  crossref  mathscinet  zmath
6. Popkov, Yu., Shvetsov, V., and Weidlich, W., “Settlement Formation Models with Entropy Operator”, Ann. Reg. Sci., 32:2 (1998), 267–294  crossref
7. Leble, S. B., Vereshchagin, S. D., and Vereshchagina, I. S., “Algorithm for the Diagnostics of Waves and Entropy Mode in the Exponentially Stratified Atmosphere”, Russ. J. Phys. Chem. B, 14:2 (2020), 371–376  crossref  mathscinet
8. Luckhaus, S. and Plotnikov, P. I., “Entropy Solutions to the Buckley – Leverett Equations”, Siberian Math. J., 41:2 (2000), 329–348  mathnet  crossref  mathscinet  zmath; Sibirsk. Mat. Zh., 41:2 (2000), 400–420 (Russian)  mathscinet  zmath
9. Popkov, Yu. S. and Rublev, M. V., “Dynamic Procedures of Image Reconstruction from Projections (Computer Tomography)”, Autom. Remote Control, 67:2 (2006), 233–241  mathnet  crossref  mathscinet  zmath
10. Daneev, A. V., Rusanov, V. A., and Sharpinskii, D. Yu., “The Entropy Maximum Principle in the Structural Identification of Dynamical Systems: An Analytic Approach”, Russian Math. (Iz. VUZ), 49:11 (2005), 14–22  mathnet  mathscinet  zmath; Izv. Vyssh. Uchebn. Zaved. Mat., 2005, no. 11, 16–24 (Russian)  zmath
11. Tikhonov, A. N., Vasilieyva, A. B., and Volosov, V. M., “Differential Equations with Small Parameters”, Proc. of the Internat. Symp. on Nonlinear Oscillations (Kiev, Sep 1961), v. 1, 456–473 (Russian)  mathscinet  zmath
12. Kurina, G. A., Dmitriev, M. G., and Naidu, D. S., “Discrete Singularly Pertubed Control Problems (A Survey)”, Discrete Continuous Dyn. Syst. Ser. B, 24 (2017), 335–370  mathscinet  zmath
13. de Groot, S. E. and Masur, P., Non-Equilibrium Thermodynamics, North-Holland, Amsterdam, 1962, x, 510 pp.  mathscinet  zmath
14. Popkov, Yu. S., “A New Class of Dynamic Macrosystem Models with Self-Reproduction”, Environ. Plan. A, 21:6 (1989), 739–751  crossref  mathscinet
15. Wilson, A. G., Catastrophe Theory and Bifurcation: Applications to Urban and Regional Systems, Croom Helm, London, 1981, 354 pp.  mathscinet  zmath
16. Bobylev, N. A. and Popkov, A. Yu., “Forced Oscillations in Systems with Argmin Type Operators”, Autom. Remote Control., 63:11 (2002), 1707–1716  mathnet  crossref  mathscinet  zmath
17. Antipin, A. S., “The Differential Controlled Gradient Method for Symmetric Extremal Mappings”, Differ. Equ., 34:8 (1998), 1020–1030  mathnet  mathscinet  zmath; Differ. Uravn., 34:8 (1998), 1018–1028, 1148 (Russian)  mathscinet  zmath
18. Popkov, A. Yu., Macrosystems Theory and Its Applications. Equilibrium Models, Lecture Notes Control Inform. Sci., 203, Springer, London, 1995, xiv+323 pp.  mathscinet  zmath
19. Popkov, Yu. S., “Qualitative Analysis of Dynamic Systems with the $B_q^{}$ Entropy Operator”, Autom. Remote Control, 68:1 (2007), 38–53  mathnet  crossref  mathscinet  zmath
20. Popkov, Yu. S. and Rublev, M. V., “Estimation of a Local Lipschitz Constant of the $B_q^{}$-Entropy”, Autom. Remote Control, 66:7 (2005), 1069–1080  mathnet  crossref  mathscinet  zmath
21. Krasnosel'skii, M. A., Vainikko, G. M., Zabreiko, P. P., Rutitski, Ya. B., and Stecenko, V. Ya., Approximated Solutions of Operator Equations, Springer, Dordrecht, 1972, 496 pp.  mathscinet
22. Krasnosel'skii, M. A., The Operator of Translation along the Trajectories of Differential Equations, Transl. Math. Monogr., 19, AMS, Providence, R.I., 1968, 294 pp.  mathscinet  zmath
23. Bohr, H., “Zur Theorie der fastperiodischen Funktionen: 1. Eine Verallgemeinerung der Theorie der Fourierreihen”, Acta Math., 45 (1924), 29–127  crossref  mathscinet; Bohr, H., “Zur Theorie der fastperiodischen Funktionen: 2. Zusammenhang der fastperiodischen Funktionen mit Funktionen von unendlich vielen Variabeln; gleichmässige Approximation durch trigonometrische Summen”, Acta Math., 46 (1925), 102–214  crossref  mathscinet; Bohr, H., “Zur Theorie der fastperiodischen Funktionen: 3. Dirichletentwicklung analytischer Funktionen”, Acta Math., 47 (1926), 237–281  crossref  mathscinet
24. Krasnosel'skii, M. A., Burd, V. S., and Kolesov, Yu. S., Nonlinear Almost Periodic Oscillations, Wiley, New York, 1973, 366 pp.  mathscinet  zmath
25. Krasnosel'skii, M. A. and Zabreiko, P. P., Geometrical Methods of Nonlinear Analysis, Grundlehren Math. Wiss., 263, Springer, New York, 1984, XX, 412 pp.  crossref  mathscinet  zmath
26. Popkov, Yu. S., “Upper Bound Design for the Lipschitz Constant of the $F_{G(\nu,\,q)}^{}$-Entropy Operator”, Mathematics, 6:5 (2018), 73, 9 pp.  crossref
27. Davis, B., Integral Transforms and Their Applications, Springer, New York, 1978, xii, 411 pp.  mathscinet
28. Tikhonov, A. N., Vasil'eva, A. B., and Sveshnikov, A. G., Differential Equations, Springer, Berlin, 1985, VIII, 240 pp.  mathscinet  zmath
29. Beckenbach, E. F. and Bellman, R., Inequalities, Ergeb. Math. Grenzgeb. (N. F.), 30, Springer, Berlin, 1961, xii+198 pp.  mathscinet  zmath
30. Malkin, I. G., Some Problems in the Theory of Nonlinear Oscillations: In 2 Vols., United States Atomic Energy Commission, Technical Information Service, Germantown, Md., 1959, 589 pp.
31. Volterra, V., Theory of Functionals and Integro- and Integro-Differential Equations, Blackie & Son, London, 1930, iii, 226 pp.  mathscinet
32. Popkov, Yu. S., Kiselev, O. N., Petrov, N. P., and Shmul'yan, B. L., Identification and Optimization of Nonlinear Stochastic Systems, Energiya, Moscow, 1976, 440 pp. (Russian)
33. Ogunfunmi, T., Adaptive Nonlinear System Identification: The Volterra and Winer Approaches, Springer, New York, 2007, XVI, 232 pp.
34. Van Trees, H. L., Synthesis of Optimal Nonlinear Control Systems, Cambridge, Mass., MIT, 102 pp.
35. Debnath, L. and Bhatta, D., Integral Transforms and Their Applications, 3rd ed., CRC, Boca Raton, Fla., 2015, xxvi+792 pp.  mathscinet  zmath
36. Polyak, B. T., Introduction to Optimization, Optimization Software, New York, 1987  mathscinet
37. Magnus, J. R. and Neudecker, H., Matrix Differential Calculus with Applications in Statistics and Econometrics, 3rd ed., Wiley, New York, 2007  mathscinet


© МИАН, 2025