|
|
|
Список литературы
|
|
|
1. |
Arsenović M., Shamoyan R. F., “On some extremal problems in spaces of harmonic functions”, Romai Journal, 7:1 (2011), 13–34 |
2. |
Arsenović M., Shamoyan R. F., “Embeddings, traces and multipliers in harmonic function spaces”, Kragujevac Journal of Mathematics, 37:1 (2013), 45–64, arXiv: 1108.5343[math.FA] |
3. |
Arsenović M., Shamoyan R. F., Sharp theorems on multipliers and distances in harmonic function spaces, arXiv: 1106.5481[math.CV] |
4. |
Jevtić M., Pavlović M., “Harmonic Bergman functions on the unit ball in $\mathbb{R}^n$”, Acta Math. Hungar., 85:1–2 (1999), 81–96 |
5. |
Djrbashian M., Shamoian F., Topics in the theory of $A_{\alpha}^p$ classes, Teubner Texte zur Mathematik, 105, 1988 |
6. |
Shamoyan R. F., Mihić O., “On new estimates for distances in analytic function spaces in the unit disc, polydisc and unit ball”, Bol. de la Asoc. Matematica Venezolana, 42:2 (2010), 89–103 |
7. |
Shamoyan R. F., Mihić O., “On new estimates for distances in analytic function spaces in higher dimension”, Siberian Electronic Mathematical Reports, 6 (2009), 514–517 |
8. |
Stein E. M., Weiss G., Introduction to Fourier analysis on Euclidean spaces, Princeton University Press, Princeton, 1971 |
9. |
Avetisyan K. L., “Weighted spaces of harmonic and analytic functions”, Armenian Journal of Mathematics, 2:4 (2009) ; Weighted spaces of harmonic and analytic functions, PhD Thesis, Erevan State University, Erevan |
10. |
Zakaryan M., Weighted spaces of harmonic functions in unit ball and upperhalfspaces, PhD Thesis, Erevan State University, Erevan, 1996 |
11. |
Shamoyan R. F., “On characterizations of main parts of some meromorphic classes of area Nevanlinna”, Tr. Petrozavodsk. Gos. Univ. Ser. Mathematics., 18 (2011), 172–254 |
12. |
Shamoyan R. F., Haiying L., “On decriptions of closed ideals of analytic area Nevanlinna type classes in a circular ring on a complex plane $\mathbb{C}$”, Issues of Analysis, 1 (19):1 (2012), 24–31 |
13. |
Zhao R., “Distance from Bloch functions to some Mobius invariant spaces”, Ann. Acad. Sci. Fenn., 33 (2008), 303–313 |