|
|
|
Список литературы
|
|
|
1. |
J. D. Crouch, “Boundary-layer transition prediction for laminar flow control.”, AIAA; N 2015-2472, 2015 |
2. |
A. L. Braslow, A history of suction-type laminar-flow control with emphasis on flight research, Monographs in aerospace history; N 13, NASA, 1999 \href{https://www.nasa.gov/wp-content/uploads/2021/04/88792main_laminar.pdf} {https://www.nasa. |
3. |
R. D. Joslin, “Aircraft laminar flow control”, Ann. Rev. Fluid Mech., 30 (1998), 1–29 |
4. |
A. H. Nayfeh, Influence of two-dimensional imperfections on laminar flow, SAE; N 921990, Warrendale, 1992 \href{https://www.sae.org/publications/technical-papers/content/921990} {https://www.sae.org/pu |
5. |
D. Arnal, “Boundary layer transition: Prediction, application to drag reduction”, AGARD R-786, AGARD, Neuilly sur Seine https://apps.dtic.mil/sti/citations/ADP006968, 1992, 5–1 |
6. |
Г. Шлихтинг, Теория пограничного слоя, Наука, М., 1969 |
7. |
V. I. Borodulin, A. V. Ivanov, Y. S. Kachanov, “Swept-wing boundary-layer transition at various external perturbations: Scenarios, criteria, and problems of prediction”, Phys. Fluids, 29 (2017), 094101 |
8. |
Crouch J. D., Kosorygin V. S., “Surface-step effects on boundary-layer transition dominated by Tollmien – Schlichting instability”, AIAA J., 58:7 (2020), 2943–2950 |
9. |
J. D. Crouch, V. S. Kosorygin, M. I. Sutanto, Modeling gap effects on transition dominated by Tollmien – Schlichting instability, AIAA; N 2020-3075, 2020 |
10. |
J. D. Crouch, V. S. Kosorygin, M. I. Sutanto, G. D. Miller, “Characterizing surface-gap effects on boundary-layer transition dominated by Tollmien – Schlichting instability”, Flow, 2 (2022), E8 |
11. |
А. В. Бойко, В. В. Козлов, В. В. Сызранцев, В. А. Щербаков, “Экспериментальное исследование процесса перехода к турбулентности на одиночном стационарном возмущении в пограничном слое скользящего крыла”, ПМТФ, 36:1 (1995), 72–84 |
12. |
J. Perraud, A. Séraudie, “Effects of steps and gaps on 2D and 3D transition”, Proc. of the Europ. congress on computational methods in applied sciences and engineering ECCOMAS 2000, Barcelona (Spain), 11-14 Sept., 2000, 1–18 https://www.researchgate.net/publication/230898184 |
13. |
A. F. Rius-Vidales, M. Kotsonis, “Impact of a forward-facing step on the development of crossflow instability”, J. Fluid Mech., 924 (2021) |
14. |
R. H. Radeztsky, M. S. Reibert, W. S. Saric, S. Takagi, Effect of micron-sized roughness on transition in swept-wing flows, AIAA; N 93-0076, Reno, 1993 |
15. |
H. Deyhle, H. Bippes, “Disturbance growth in an unstable three-dimensional boundary layer and its dependence on environmental conditions”, J. Fluid Mech., 316 (1996), 73–113 |
16. |
J. D. Crouch, Transition prediction and control for airplane applications, AIAA; N 97-1907, Snowmass Village, 1997 |
17. |
V. I. Borodulin, A. V. Ivanov, Y. S. Kachanov, “Quantitative visualization of transition scenarios in swept-wing boundary layers”, Proc. of the 13th Asian symp. on visualization, Novosibirsk (Russia), 2015, т. 73, Inst. Theor. Appl. Mech., Novosibirsk https://www.researchgate.net/publication/283071286 |
18. |
Y. S. Kachanov, V. I. Borodulin, A. V. Ivanov, “Problem of calculation of swept-wing boundary-layer transition to turbulence at elevated freestream turbulence levels”, AIP Conf. Proc., 1770 (2016), 020010 |
19. |
Н. В. Семенов, Ю. Г. Ермолаев, А. Д. Косинов, “Развитие возмущений в ламинаризированном сверхзвуковом пограничном слое на скользящем крыле”, ПМТФ, 49:2 (2008), 40–46 |
20. |
V. I. Borodulin, A. V. Ivanov, Y. S. Kachanov, et al., “Laminar-turbulent transition of a swept-wing boundary layer under the influence of cylindrical trip devices”, Материалы 22-й Междунар. конф. “Нелинейные задачи теории гидродинамической устойчивости и турбулентность”, г. Звенигород (Россия), 14-21 февр., 2016, 305–308 https://www.researchgate.net/publication/311515769 |
21. |
J. D. Crouch, V. I. Borodulin, A. V. Ivanov, Y. S. Kachanov, “Gap effects on crossflow dominated transition in the presence of surface roughness and free-stream turbulence”, Book of abstracts of the 12th Europ. research community on flow, turbulence and combustion ERCOFTAC SIG 33 Workshop “Progress in flow instability, transition and control”, Certosa di Pontignano (Italy), June 19-21, 2017, 23 http://www.ercoftac.org/downloads/sig33/book_of_abstracts_2017.pdf |
22. |
Y. S. Kachanov, V. I. Borodulin, A. V. Ivanov, J. D. Crouch, “Effects of surface steps on crossflow dominated swept-wing boundary-layer transition in presence of unsteady and steady freestream vortices”, Book of abstracts of the 12th Europ. research community on flow, turbulence and combustion ERCOFTAC SIG 33 Workshop “Progress in flow instability, transition and control”, Certosa di Pontignano (Italy), June 19-21, 2017, 22 http://www.ercoftac.org/downloads/sig33/book_of_abstracts_2017.pdf |
23. |
Y. S. Kachanov, V. I. Borodulin, A. V. Borodulin, Effects of spanwise-uniform surface irregularities on a swept-wing boundary-layer transition initiated by cross-flow instability in presence of free-stream vortices. Pt 1. Experimental conditions and regimes of measurements: Interim project rep. on agreement N 106 (Exhibit 106W, pt B), Inst. Theor. Appl. Mech., Novosibirsk, 2011 |
24. |
Y. S. Kachanov, V. I. Borodulin, A. V. Ivanov, Effects of spanwise-uniform surface irregularities on a swept-wing boundary-layer transition initiated by cross-flow instability in presence of free-stream vortices. Pt 2. Transition locations and disturbance amplitudes at transition: Final project rep. on agreement N 106 (Exhibit 106W, pt B), Inst. Theor. Appl. Mech., Novosibirsk, 2011 |
25. |
V. I. Borodulin, A. V. Ivanov, Y. S. Kachanov, A. P. Roschektayev, “Distributed vortex receptivity of swept-wing boundary layer. Pt 1. Efficient excitation of CF modes”, J. Fluid Mech., 908 (2020) |
26. |
V. I. Borodulin, A. V. Ivanov, Y. S. Kachanov, et al., “Criteria of swept-wing boundary-layer transition and variable N-factor methods of transition prediction”, Proc. of the 27th Intern. conf. on methods of aerophysical research, Novosibirsk (Russia), June 30 – July 6, 2014, Inst. Theor. Appl. Mech., Novosibirsk https://www.researchgate.net/publication/266284937 |