|
|
|
Список литературы
|
|
|
1. |
C. An, M. Duan, R. D. Toledo Filho, et al., “Collapse of sandwich pipes with PVA fiber reinforced cementitious composites core under external pressure”, Ocean Engng., 82 (2014), 1–13 |
2. |
G. S. Serovaev, A. P. Shestakov, D. A. Oshmarin, “Numerical study of vibrational processes in composite material for the development of a delamination control system”, J. Appl. Mech. Tech. Phys., 59:7 (2018), 1261–1270 |
3. |
S. Kumar, A. Saha, “Effects of stacking sequence of pineapple leaf-flax reinforced hybrid composite laminates on mechanical characterization and moisture resistant properties”, Proc. Inst. Mech. Engrs. C. J. Mech. Engng Sci., 236:3 (2022), 1733–1750 |
4. |
M. Ramesh, L. Rajeshkumar, D. Balaji, “Influence of process parameters on the properties of additively manufactured fiber-reinforced polymer composite materials: A review”, J. Materials Engng Performance, 30:7 (2021), 4792–4807 |
5. |
S. Ke Chun, P. Guang, “Optimizing the buckling strength of filament winding composite cylinders under hydrostatic pressure”, J. Reinforc. Plastics Composites, 37:13 (2018), 892–904 |
6. |
A. G. Kolpakov, “Design problem of laminated plates with specified characteristics”, J. Appl. Mech. Tech. Phys., 44:2 (2003), 290–297 |
7. |
J. Xu, T. Fu, Z. Hui, “Studies on changes in the temperature field and recrystallization properties of glass fiber reinforced polypropylene composite strip winding process”, Proc. Inst. Mech. Engrs. C. J. Mech. Engng Sci., 235:19 (2021), 4171–4180 |
8. |
C. Kang, Z. Liu, B. Shirinzadeh, et al., “Multiparametric sensitivity analysis of multilayered filament-wound cylinder under internal pressure”, Mech. Adv. Materials Structure, 29:1 (2020), 1–12 |
9. |
I. U. Cagdas, “Optimal design of filament wound truncated cones under axial compression”, Composite Structures, 170 (2017), 250–260 |
10. |
M. Xia, H. Takayanagi, K. Kemmochi, “Analysis of multi-layered filament-wound composite pipes under internal pressure”, Composite Structures, 53:4 (2001), 483–491 |
11. |
P. Geng, J. Z. Xing, X. X. Chen, “Winding angle optimization of filament-wound cylindrical vessel under internal pressure”, Arch. Appl. Mech., 87:3 (2017), 365–384 |
12. |
A. Rotem, Z. Hashin, “Failure modes of angle ply laminates”, J. Composite Materials, 9:2 (1975), 191–206 |
13. |
T. V. Lisbôa, J. H. S. Almeida (Jr), I. H. Dalibor, et al., “The role of winding pattern on filament wound composite cylinders under radial compression”, Polymer Composites, 41:6 (2020), 2446–2454 |
14. |
T. V. Lisbôa, J. H. S. Almeida (Jr), A. Spickenheuer, et al., “FEM updating for damage modeling of composite cylinders under radial compression considering the winding pattern”, Thin-Wall. Structures, 173 (2022), 108954 |
15. |
E. S. Tashnizi, S. Gohari, S. Sharifi, et al., “Optimal winding angle in laminated CFRP composite pipes subjected to patch loading: Analytical study and experimental validation”, Intern. J. Pressure Vessels Piping, 180 (2020), 104042 |
16. |
E. Pourahmadi, F. Taheri-Behrooz, “The influence of fiber bundle width on the mechanical properties of filament-wound cylindrical structures”, Intern. J. Mech. Sci., 178 (2020), 105617 |
17. |
F. Taheri-Behrooz, E. Pourahmadi, “A 3D RVE model with periodic boundary conditions to estimate mechanical properties of composites”, Structur. Engng Mech., 72:6 (2019), 713–722 |
18. |
C. Kang, Z. Liu, B. Shirinzadeh, et al., “Parametric optimization for multi-layered filament-wound cylinder based on hybrid method of GA-PSO coupled with local sensitivity analysis”, Composite Structures, 267 (2021), 113861 |
19. |
C. Colombo, L. Vergani, “Optimization of filament winding parameters for the design of a composite pipe”, Composites. Pt B. Engng., 148 (2018), 207–216 |
20. |
S. Gohari, S. Sharifi, C. Burvill, et al., “Localized failure analysis of internally pressurized laminated ellipsoidal woven GFRP composite domes: Analytical, numerical, and experimental studies”, Arch. Civil Mech. Engng., 19:4 (2019), 1235–1250 |
21. |
R. Rafiee, A. Amini, “Modeling and experimental evaluation of functional failure pressures in glass fiber reinforced polyester pipes”, Comput. Materials Sci., 96 (2015), 579–588 |
22. |
A. N. Polilov, D. D. Vlasov, O. Y. Sklemina, et al., “Evaluation of the strength of a composite cylinder for compressed gas”, J. Machinery Manufacture Reliab., 51:1 (2022), 46–54 |
23. |
A. N. Polilov, O. Y. Sklemina, N. A. Tatus', “Design method of reinforcement structure with symmetric pairs of layers by the example of composite gas tank”, Mech. Composite Materials, 57:6 (2022), 769–784 |
24. |
A. N. Polilov, D. D. Vlasov, O. Y. Sklemina, et al., “Strength criteria of obliquely wound composite tubes under biaxial tension”, Strength Materials, 53:5 (2022), 765–774 |
25. |
F. Taheri-Behrooz, E. Pourahmadi, “Mutual effect of Coriolis acceleration and temperature gradient on the stress and strain field of a glass/epoxy composite-pipe”, Appl. Math. Model, 59 (2018), 164–182 |
26. |
M. Azizian, J. H. S. Almeida (Jr)., “Stochastic, probabilistic and reliability analyses of internally-pressurised filament wound composite tubes using artificial neural network metamodels”, Materials Today Comm, 31 (2022), 103627 |
27. |
V. V. Alekhin, “Design of a laminated anisotropic curvilinear beam of minimal weight”, J. Appl. Mech. Tech. Phys., 38:1 (1997), 116–122 |
28. |
Z. Wang, J. H. S. Almeida (Jr), St-Pierre L., et al., “Reliability-based buckling optimization with an accelerated Kriging metamodel for filament-wound variable angle tow composite cylinders”, Composite Structures, 254 (2020), 112821 |
29. |
A. Paknahad, A. Fathi, A. M. Goudarzi, et al., “Optimum head design of filament wound composite pressure vessels using a hybrid model of FE analysis and inertia weight PSO algorithm”, Intern. J. Material Form, 9:1 (2016), 49–57 |
30. |
A. Golshan, S. Gohari, A. Ayob, “Multi-objective optimisation of electrical discharge machining of metal matrix composite Al/SiC using non-dominated sorting genetic algorithm”, Intern. J. Mechatron. Manufactur. Systems, 5:5 (2012), 385–398 |
31. |
I. Lapczyk, J. A. Hurtado, “Progressive damage modeling in fiber-reinforced materials”, Composites. Pt A. Appl. Sci. Manufactur., 38:11 (2007), 2333–2341 |
32. |
H. Zhu, Z. X. Guo, M. Zhu, et al., “A progressive FE failure model for laminates under biaxial loading”, Mech. Composite Materials, 56 (2020), 207–214 |
33. |
V. M. Kornev, A. G. Demeshkin, “Necessary and sufficient fracture criteria for a composite with a brittle matrix. Pt 2. High-strength reinforcement”, J. Appl. Mech. Tech. Phys., 44:3 (2003), 425–431 |
34. |
P. M. Wild, G. W. Vickers, “Analysis of filament-wound cylindrical shells under combined centrifugal, pressure and axial loading”, Composites. Pt A. Appl. Sci. Manufactur., 28:1 (1997), 47–55 |
35. |
J. Xing, P. Geng, T. Yang, “Stress and deformation of multiple winding angle hybrid filament-wound thick cylinder under axial loading and internal and external pressure”, Composite Structures, 131 (2015), 868–877 |
36. |
G. Shen, Mechanics of composite materials, eds. G. Shen, G. Hu, B. Liu, Tsinghua Univ. Press, Beijing, 2013 |
37. |
S. R. White, Y. K. Kim, “Process-induced residual stress analysis of AS4/3501-6 composite material”, Mech. Composite Materials Structures, 5:2 (1998), 153–186 |
38. |
S. W. Tsai, E. M. Wu, “A general theory of strength for anisotropic materials”, J. Composite Materials, 5:1 (1971), 58–80 |
39. |
K. S. Liu, S. W. Tsai, “A progressive quadratic failure criterion for a laminate”, Composites Sci. Technol., 58:7 (1998), 1023–1032 |
40. |
C. C. Chamis, Simplified composite micromechanics equations for strength, fracture toughness, impact resistance and environmental effects, Lewis Res. Center, Cleveland, 1984 |
41. |
C. Liu, Y. Shi, “Design optimization for filament wound cylindrical composite internal pressure vessels considering process-induced residual stresses”, Composite Structures, 235 (2020), 111755 |
42. |
W. Long, S. Cai, J. Jiao, et al., “An efficient and robust grey wolf optimizer algorithm for large-scale numerical optimization”, Soft Comput., 24:2 (2020), 997–1026 |
43. |
T. Ramakrishnan, B. Sankaragomathi, “A professional estimate on the computed tomography brain tumor images using SVM-SMO for classification and MRG-GWO for segmentation”, Pattern Recognit. Lett., 94 (2017), 163–171 |
44. |
H. M. Deuschle, 3D failure analysis of UD fibre reinforced composites: Puck's theory within FEA, Inst. of Statics and Dynamics of Aerospace Structures: Univ. Stuttgart, Stuttgart, 2010 |