RUS  ENG
Полная версия
ЖУРНАЛЫ // Прикладная механика и техническая физика

Прикл. мех. техн. физ., 2024, том 65, выпуск 4, страницы 164–178 (Mi pmtf7686)

Оптимизация конструктивных параметров сосуда высокого давления c использованием гибридного метода, построенного на основе метода роя частиц и метода стаи серых волков
Ц. Лю, М. Чжун, Ш. Е, Ч. Ли, Ч. Кан, Б. Дэн

Список литературы

1. C. An, M. Duan, R. D. Toledo Filho, et al., “Collapse of sandwich pipes with PVA fiber reinforced cementitious composites core under external pressure”, Ocean Engng., 82 (2014), 1–13
2. G. S. Serovaev, A. P. Shestakov, D. A. Oshmarin, “Numerical study of vibrational processes in composite material for the development of a delamination control system”, J. Appl. Mech. Tech. Phys., 59:7 (2018), 1261–1270
3. S. Kumar, A. Saha, “Effects of stacking sequence of pineapple leaf-flax reinforced hybrid composite laminates on mechanical characterization and moisture resistant properties”, Proc. Inst. Mech. Engrs. C. J. Mech. Engng Sci., 236:3 (2022), 1733–1750
4. M. Ramesh, L. Rajeshkumar, D. Balaji, “Influence of process parameters on the properties of additively manufactured fiber-reinforced polymer composite materials: A review”, J. Materials Engng Performance, 30:7 (2021), 4792–4807
5. S. Ke Chun, P. Guang, “Optimizing the buckling strength of filament winding composite cylinders under hydrostatic pressure”, J. Reinforc. Plastics Composites, 37:13 (2018), 892–904
6. A. G. Kolpakov, “Design problem of laminated plates with specified characteristics”, J. Appl. Mech. Tech. Phys., 44:2 (2003), 290–297
7. J. Xu, T. Fu, Z. Hui, “Studies on changes in the temperature field and recrystallization properties of glass fiber reinforced polypropylene composite strip winding process”, Proc. Inst. Mech. Engrs. C. J. Mech. Engng Sci., 235:19 (2021), 4171–4180
8. C. Kang, Z. Liu, B. Shirinzadeh, et al., “Multiparametric sensitivity analysis of multilayered filament-wound cylinder under internal pressure”, Mech. Adv. Materials Structure, 29:1 (2020), 1–12
9. I. U. Cagdas, “Optimal design of filament wound truncated cones under axial compression”, Composite Structures, 170 (2017), 250–260
10. M. Xia, H. Takayanagi, K. Kemmochi, “Analysis of multi-layered filament-wound composite pipes under internal pressure”, Composite Structures, 53:4 (2001), 483–491
11. P. Geng, J. Z. Xing, X. X. Chen, “Winding angle optimization of filament-wound cylindrical vessel under internal pressure”, Arch. Appl. Mech., 87:3 (2017), 365–384
12. A. Rotem, Z. Hashin, “Failure modes of angle ply laminates”, J. Composite Materials, 9:2 (1975), 191–206
13. T. V. Lisbôa, J. H. S. Almeida (Jr), I. H. Dalibor, et al., “The role of winding pattern on filament wound composite cylinders under radial compression”, Polymer Composites, 41:6 (2020), 2446–2454
14. T. V. Lisbôa, J. H. S. Almeida (Jr), A. Spickenheuer, et al., “FEM updating for damage modeling of composite cylinders under radial compression considering the winding pattern”, Thin-Wall. Structures, 173 (2022), 108954
15. E. S. Tashnizi, S. Gohari, S. Sharifi, et al., “Optimal winding angle in laminated CFRP composite pipes subjected to patch loading: Analytical study and experimental validation”, Intern. J. Pressure Vessels Piping, 180 (2020), 104042
16. E. Pourahmadi, F. Taheri-Behrooz, “The influence of fiber bundle width on the mechanical properties of filament-wound cylindrical structures”, Intern. J. Mech. Sci., 178 (2020), 105617
17. F. Taheri-Behrooz, E. Pourahmadi, “A 3D RVE model with periodic boundary conditions to estimate mechanical properties of composites”, Structur. Engng Mech., 72:6 (2019), 713–722
18. C. Kang, Z. Liu, B. Shirinzadeh, et al., “Parametric optimization for multi-layered filament-wound cylinder based on hybrid method of GA-PSO coupled with local sensitivity analysis”, Composite Structures, 267 (2021), 113861
19. C. Colombo, L. Vergani, “Optimization of filament winding parameters for the design of a composite pipe”, Composites. Pt B. Engng., 148 (2018), 207–216
20. S. Gohari, S. Sharifi, C. Burvill, et al., “Localized failure analysis of internally pressurized laminated ellipsoidal woven GFRP composite domes: Analytical, numerical, and experimental studies”, Arch. Civil Mech. Engng., 19:4 (2019), 1235–1250
21. R. Rafiee, A. Amini, “Modeling and experimental evaluation of functional failure pressures in glass fiber reinforced polyester pipes”, Comput. Materials Sci., 96 (2015), 579–588
22. A. N. Polilov, D. D. Vlasov, O. Y. Sklemina, et al., “Evaluation of the strength of a composite cylinder for compressed gas”, J. Machinery Manufacture Reliab., 51:1 (2022), 46–54
23. A. N. Polilov, O. Y. Sklemina, N. A. Tatus', “Design method of reinforcement structure with symmetric pairs of layers by the example of composite gas tank”, Mech. Composite Materials, 57:6 (2022), 769–784
24. A. N. Polilov, D. D. Vlasov, O. Y. Sklemina, et al., “Strength criteria of obliquely wound composite tubes under biaxial tension”, Strength Materials, 53:5 (2022), 765–774
25. F. Taheri-Behrooz, E. Pourahmadi, “Mutual effect of Coriolis acceleration and temperature gradient on the stress and strain field of a glass/epoxy composite-pipe”, Appl. Math. Model, 59 (2018), 164–182
26. M. Azizian, J. H. S. Almeida (Jr)., “Stochastic, probabilistic and reliability analyses of internally-pressurised filament wound composite tubes using artificial neural network metamodels”, Materials Today Comm, 31 (2022), 103627
27. V. V. Alekhin, “Design of a laminated anisotropic curvilinear beam of minimal weight”, J. Appl. Mech. Tech. Phys., 38:1 (1997), 116–122
28. Z. Wang, J. H. S. Almeida (Jr), St-Pierre L., et al., “Reliability-based buckling optimization with an accelerated Kriging metamodel for filament-wound variable angle tow composite cylinders”, Composite Structures, 254 (2020), 112821
29. A. Paknahad, A. Fathi, A. M. Goudarzi, et al., “Optimum head design of filament wound composite pressure vessels using a hybrid model of FE analysis and inertia weight PSO algorithm”, Intern. J. Material Form, 9:1 (2016), 49–57
30. A. Golshan, S. Gohari, A. Ayob, “Multi-objective optimisation of electrical discharge machining of metal matrix composite Al/SiC using non-dominated sorting genetic algorithm”, Intern. J. Mechatron. Manufactur. Systems, 5:5 (2012), 385–398
31. I. Lapczyk, J. A. Hurtado, “Progressive damage modeling in fiber-reinforced materials”, Composites. Pt A. Appl. Sci. Manufactur., 38:11 (2007), 2333–2341
32. H. Zhu, Z. X. Guo, M. Zhu, et al., “A progressive FE failure model for laminates under biaxial loading”, Mech. Composite Materials, 56 (2020), 207–214
33. V. M. Kornev, A. G. Demeshkin, “Necessary and sufficient fracture criteria for a composite with a brittle matrix. Pt 2. High-strength reinforcement”, J. Appl. Mech. Tech. Phys., 44:3 (2003), 425–431
34. P. M. Wild, G. W. Vickers, “Analysis of filament-wound cylindrical shells under combined centrifugal, pressure and axial loading”, Composites. Pt A. Appl. Sci. Manufactur., 28:1 (1997), 47–55
35. J. Xing, P. Geng, T. Yang, “Stress and deformation of multiple winding angle hybrid filament-wound thick cylinder under axial loading and internal and external pressure”, Composite Structures, 131 (2015), 868–877
36. G. Shen, Mechanics of composite materials, eds. G. Shen, G. Hu, B. Liu, Tsinghua Univ. Press, Beijing, 2013
37. S. R. White, Y. K. Kim, “Process-induced residual stress analysis of AS4/3501-6 composite material”, Mech. Composite Materials Structures, 5:2 (1998), 153–186
38. S. W. Tsai, E. M. Wu, “A general theory of strength for anisotropic materials”, J. Composite Materials, 5:1 (1971), 58–80
39. K. S. Liu, S. W. Tsai, “A progressive quadratic failure criterion for a laminate”, Composites Sci. Technol., 58:7 (1998), 1023–1032
40. C. C. Chamis, Simplified composite micromechanics equations for strength, fracture toughness, impact resistance and environmental effects, Lewis Res. Center, Cleveland, 1984
41. C. Liu, Y. Shi, “Design optimization for filament wound cylindrical composite internal pressure vessels considering process-induced residual stresses”, Composite Structures, 235 (2020), 111755
42. W. Long, S. Cai, J. Jiao, et al., “An efficient and robust grey wolf optimizer algorithm for large-scale numerical optimization”, Soft Comput., 24:2 (2020), 997–1026
43. T. Ramakrishnan, B. Sankaragomathi, “A professional estimate on the computed tomography brain tumor images using SVM-SMO for classification and MRG-GWO for segmentation”, Pattern Recognit. Lett., 94 (2017), 163–171
44. H. M. Deuschle, 3D failure analysis of UD fibre reinforced composites: Puck's theory within FEA, Inst. of Statics and Dynamics of Aerospace Structures: Univ. Stuttgart, Stuttgart, 2010


© МИАН, 2025