|
|
|
Список литературы
|
|
|
1. |
T. Y. Yang, S. Saigal, “A curved quadrilateral element for static analysis of shells with geometric and material nonlinearities”, Intern. J. Numer. Methods Engng., 21:4 (1985), 617–635 |
2. |
T. Saigal, J. R. Kommineni, “Geometrically non-linear transient analysis of laminated composite and sandwich shells with a refined theory and $C^0$ finite elements”, Comput. Structures, 52:6 (1994), 1243–1259 |
3. |
J. N. Reddy, K. Chandrashekhara, “Geometrically non-linear transient analysis of laminated, doubly curved shells”, Intern. J. Non-Linear Mech., 20:2 (1985), 79–90 |
4. |
N. Nanda, J. N. Bandyopadhyay, “Geometrically nonlinear transient analysis of laminated composite shells using the finite element method”, J. Sound Vibrat., 325 (2009), 174–185 |
5. |
M. Ganapathi, T. K. Varadan, “Application of a field-consistent shear flexible element for nonlinear dynamic analysis of laminated shells”, Finite Elements Anal. Design, 12 (1992), 105–116 |
6. |
B. P. Patel, S. Singh, Y. Nath, “Stability and nonlinear dynamic behaviour of cross-ply laminated heated cylindrical shells”, Latin Amer. J. Solids Structures, 3 (2006), 245–261 |
7. |
D. Kuhl, E. Ramm, “Constraint energy momentum algorithm and its application to non-linear dynamics of shells”, Comput. Methods Appl. Mech. Engng., 136:3 (1996), 293–315 |
8. |
T. J. R. Hughes, W. K. Liu, I. Levit, “Nonlinear dynamic finite element analysis of shells”, Nonlinear finite element analysis in structural mechanics, Springer, Berlin; Heidelberg, 1981, 151–168 |
9. |
Z. Zhang, D. H. Liu, D. Y. Liu, “Degenerated shell element with composite implicit time integration scheme for geometric nonlinear analysis”, Intern. J. Numer. Methods Engng., 105:7 (2016), 483–513 |
10. |
L. Isoldi, A. M. Awruch, P. R. F. Teixeira, I. B. Morsch, “Geometrically nonlinear static and dynamic analysis of composite laminates shells with triangular finite element”, J. Brazilian Soc. Mech. Sci. Engng., 30:1 (2008), 84–93 |
11. |
J. Argyris, M. Papadrakakis, Z. S. Mouroutis, “Nonlinear dynamic analysis of shells with the triangular element TRIC”, Comput. Methods Appl. Mech. Engng., 192 (2003), 3005–3038 |
12. |
C. W. S. To, B. Wang, “Transient responses of geometrically nonlinear laminated composite shell structures”, Finite Elements Anal. Design, 31:2 (1998), 117–134 |
13. |
S. Li, J. Zhang, X. Cui, “Nonlinear dynamic analysis of shell structures by the formulation based on a discrete shear gap”, Acta Mech., 230 (2019), 3571–3591 |
14. |
E. M. B. Campello, P. M. Pimenta, P. Wriggers, “An exact conserving algorithm for nonlinear dynamics with rotational DOFs and general hyperelasticity. Pt 2. Shells”, Comput. Mech., 48 (2011), 195–211 |
15. |
N. S. N. Ota, L. Wilson, A. G. Neto, et al., “Nonlinear dynamic analysis of creased shells”, Finite Elements Anal. Design, 121:15 (2016), 64–74 |
16. |
B. Brank, L. Briseghella, N. Tonello, F. B. Damjanić, “On non-linear dynamics of shells: implementation of energy-momentum conserving algorithm for a finite rotation shell model”, Intern. J. Numer. Methods Engng., 42:3 (1998), 409–442 |
17. |
B. Brank, J. Korelc, A. Ibrahimbegović, “Dynamics and time-stepping schemes for elastic shells undergoing finite rotations”, Comput. Structures, 81:12 (2003), 1193–1210 |
18. |
H. B. Coda, R. R. Paccola, “Unconstrained finite element for geometrical nonlinear dynamics of shells”, Math. Problems Engng., 2009 (2009), 1–32 |
19. |
C. Sansour, P. Wriggers, J. Sansour, “Nonlinear dynamics of shells: theory, finite element formulation, and integration schemes”, Nonlinear Dynamics, 13 (1997), 279–305 |
20. |
M. Balah, H. N. Al-Ghamedy, “Energy-momentum conserving algorithm for nonlinear dynamics of laminated shells based on a third-order shear deformation theory”, J. Engng Mech., 131:1 (2005), 12–22 |
21. |
F. G. Flores, E. Oñate Rotation-free finite element for the non-linear analysis of beams and axisymmetric shells, Comput. Methods Appl. Mech. Engng., 195:41-43 (2006), 5297–5315 |
22. |
E. Oñate, P. Cendoya, J. Miquel, “Non-linear explicit dynamic analysis of shells using the BST rotation-free triangle”, Engng Comput., 19:6 (2002), 662–706 |
23. |
M. Gärdsback, G. Tibert, “A comparison of rotation-free triangular shell elements for unstructured meshes”, Comput. Methods Appl. Mech. Engng., 196:49-52 (2007), 5001–5015 |
24. |
L. F. R. Espath, A. L. Braun, A. M. Awruch, L. D. Dalcin, “A NURBS-based finite element model applied to geometrically nonlinear elastodynamics using a corotational approach”, Intern. J. Numer. Methods Engng., 102:13 (2015), 1839–1868 |
25. |
Y. J. Guo, M. D. Pan, X. H. Wei, et al., “Implicit dynamic buckling analysis of thin-shell isogeometric structures considering geometric imperfections”, Intern. J. Numer. Methods Engng., 124 (2023), 1055–1088 |
26. |
В. В. Кузнецов, С. В. Левяков, “Кинематические группы и конечные элементы в механике деформируемого тела”, Изв. РАН. Механика твердого тела, 1994, № 3, 67–82 |
27. |
V. V. Kuznetsov, S. V. Levyakov, “Phenomenological invariants and their application to geometrically nonlinear formulation of triangular finite elements of shear deformable shells”, Intern. J. Solids Structures, 46 (2009), 1019–1032 |
28. |
О. Зенкевич, Метод конечных элементов в технике, Мир, М., 1975 |
29. |
К. Бате, Численные методы анализа и метод конечных элементов, ред. К. Бате, Е. Вилсон, Стройиздат, М., 1982 |
30. |
C. G. Gebhardt, I. Romero, R. Rolfes, “A new conservative/dissipative time integration scheme for nonlinear mechanical systems”, Comput. Mech., 65 (2020), 405–427 |
31. |
J. H. Maddocks, “Stability of nonlinearly elastic rods”, Arch. Rational Mech. Anal., 85 (1984), 311–354 |
32. |
G. Domokos, “Global description of elastic bars”, Z. angew. Math. Mech., 1994, 289–291 |
33. |
В. В. Кузнецов, С. В. Левяков, “О вторичной потере устойчивости эйлерова стержня”, ПМТФ, 40:6 (1999), 184–185 |
34. |
В. М. Корнев, “Анализ процесса выпучивания стержней при ударе”, ПМТФ, 1980, № 5, 180–184 |
35. |
М. А. Ильгамов, “Исследование инерционной стадии выпучивания стержня при продольном сжатии”, ПМТФ, 58:4 (2017), 180–188 |
36. |
В. В. Кузнецов, С. В. Левяков, “Уточненная геометрически нелинейная формулировка треугольного конечного элемента тонкой оболочки”, ПМТФ, 48:5 (2007), 160–172 |