RUS  ENG
Полная версия
ЖУРНАЛЫ // Прикладная механика и техническая физика

Прикл. мех. техн. физ., 2024, том 65, выпуск 4, страницы 179–192 (Mi pmtf7687)

Исследование нелинейной динамики оболочек с использованием треугольного конечного элемента, основанного на инвариантах
С. В. Левяков

Список литературы

1. T. Y. Yang, S. Saigal, “A curved quadrilateral element for static analysis of shells with geometric and material nonlinearities”, Intern. J. Numer. Methods Engng., 21:4 (1985), 617–635
2. T. Saigal, J. R. Kommineni, “Geometrically non-linear transient analysis of laminated composite and sandwich shells with a refined theory and $C^0$ finite elements”, Comput. Structures, 52:6 (1994), 1243–1259
3. J. N. Reddy, K. Chandrashekhara, “Geometrically non-linear transient analysis of laminated, doubly curved shells”, Intern. J. Non-Linear Mech., 20:2 (1985), 79–90
4. N. Nanda, J. N. Bandyopadhyay, “Geometrically nonlinear transient analysis of laminated composite shells using the finite element method”, J. Sound Vibrat., 325 (2009), 174–185
5. M. Ganapathi, T. K. Varadan, “Application of a field-consistent shear flexible element for nonlinear dynamic analysis of laminated shells”, Finite Elements Anal. Design, 12 (1992), 105–116
6. B. P. Patel, S. Singh, Y. Nath, “Stability and nonlinear dynamic behaviour of cross-ply laminated heated cylindrical shells”, Latin Amer. J. Solids Structures, 3 (2006), 245–261
7. D. Kuhl, E. Ramm, “Constraint energy momentum algorithm and its application to non-linear dynamics of shells”, Comput. Methods Appl. Mech. Engng., 136:3 (1996), 293–315
8. T. J. R. Hughes, W. K. Liu, I. Levit, “Nonlinear dynamic finite element analysis of shells”, Nonlinear finite element analysis in structural mechanics, Springer, Berlin; Heidelberg, 1981, 151–168
9. Z. Zhang, D. H. Liu, D. Y. Liu, “Degenerated shell element with composite implicit time integration scheme for geometric nonlinear analysis”, Intern. J. Numer. Methods Engng., 105:7 (2016), 483–513
10. L. Isoldi, A. M. Awruch, P. R. F. Teixeira, I. B. Morsch, “Geometrically nonlinear static and dynamic analysis of composite laminates shells with triangular finite element”, J. Brazilian Soc. Mech. Sci. Engng., 30:1 (2008), 84–93
11. J. Argyris, M. Papadrakakis, Z. S. Mouroutis, “Nonlinear dynamic analysis of shells with the triangular element TRIC”, Comput. Methods Appl. Mech. Engng., 192 (2003), 3005–3038
12. C. W. S. To, B. Wang, “Transient responses of geometrically nonlinear laminated composite shell structures”, Finite Elements Anal. Design, 31:2 (1998), 117–134
13. S. Li, J. Zhang, X. Cui, “Nonlinear dynamic analysis of shell structures by the formulation based on a discrete shear gap”, Acta Mech., 230 (2019), 3571–3591
14. E. M. B. Campello, P. M. Pimenta, P. Wriggers, “An exact conserving algorithm for nonlinear dynamics with rotational DOFs and general hyperelasticity. Pt 2. Shells”, Comput. Mech., 48 (2011), 195–211
15. N. S. N. Ota, L. Wilson, A. G. Neto, et al., “Nonlinear dynamic analysis of creased shells”, Finite Elements Anal. Design, 121:15 (2016), 64–74
16. B. Brank, L. Briseghella, N. Tonello, F. B. Damjanić, “On non-linear dynamics of shells: implementation of energy-momentum conserving algorithm for a finite rotation shell model”, Intern. J. Numer. Methods Engng., 42:3 (1998), 409–442
17. B. Brank, J. Korelc, A. Ibrahimbegović, “Dynamics and time-stepping schemes for elastic shells undergoing finite rotations”, Comput. Structures, 81:12 (2003), 1193–1210
18. H. B. Coda, R. R. Paccola, “Unconstrained finite element for geometrical nonlinear dynamics of shells”, Math. Problems Engng., 2009 (2009), 1–32
19. C. Sansour, P. Wriggers, J. Sansour, “Nonlinear dynamics of shells: theory, finite element formulation, and integration schemes”, Nonlinear Dynamics, 13 (1997), 279–305
20. M. Balah, H. N. Al-Ghamedy, “Energy-momentum conserving algorithm for nonlinear dynamics of laminated shells based on a third-order shear deformation theory”, J. Engng Mech., 131:1 (2005), 12–22
21. F. G. Flores, E. Oñate Rotation-free finite element for the non-linear analysis of beams and axisymmetric shells, Comput. Methods Appl. Mech. Engng., 195:41-43 (2006), 5297–5315
22. E. Oñate, P. Cendoya, J. Miquel, “Non-linear explicit dynamic analysis of shells using the BST rotation-free triangle”, Engng Comput., 19:6 (2002), 662–706
23. M. Gärdsback, G. Tibert, “A comparison of rotation-free triangular shell elements for unstructured meshes”, Comput. Methods Appl. Mech. Engng., 196:49-52 (2007), 5001–5015
24. L. F. R. Espath, A. L. Braun, A. M. Awruch, L. D. Dalcin, “A NURBS-based finite element model applied to geometrically nonlinear elastodynamics using a corotational approach”, Intern. J. Numer. Methods Engng., 102:13 (2015), 1839–1868
25. Y. J. Guo, M. D. Pan, X. H. Wei, et al., “Implicit dynamic buckling analysis of thin-shell isogeometric structures considering geometric imperfections”, Intern. J. Numer. Methods Engng., 124 (2023), 1055–1088
26. В. В. Кузнецов, С. В. Левяков, “Кинематические группы и конечные элементы в механике деформируемого тела”, Изв. РАН. Механика твердого тела, 1994, № 3, 67–82
27. V. V. Kuznetsov, S. V. Levyakov, “Phenomenological invariants and their application to geometrically nonlinear formulation of triangular finite elements of shear deformable shells”, Intern. J. Solids Structures, 46 (2009), 1019–1032
28. О. Зенкевич, Метод конечных элементов в технике, Мир, М., 1975
29. К. Бате, Численные методы анализа и метод конечных элементов, ред. К. Бате, Е. Вилсон, Стройиздат, М., 1982
30. C. G. Gebhardt, I. Romero, R. Rolfes, “A new conservative/dissipative time integration scheme for nonlinear mechanical systems”, Comput. Mech., 65 (2020), 405–427
31. J. H. Maddocks, “Stability of nonlinearly elastic rods”, Arch. Rational Mech. Anal., 85 (1984), 311–354
32. G. Domokos, “Global description of elastic bars”, Z. angew. Math. Mech., 1994, 289–291
33. В. В. Кузнецов, С. В. Левяков, “О вторичной потере устойчивости эйлерова стержня”, ПМТФ, 40:6 (1999), 184–185  mathnet
34. В. М. Корнев, “Анализ процесса выпучивания стержней при ударе”, ПМТФ, 1980, № 5, 180–184  mathnet
35. М. А. Ильгамов, “Исследование инерционной стадии выпучивания стержня при продольном сжатии”, ПМТФ, 58:4 (2017), 180–188  mathnet
36. В. В. Кузнецов, С. В. Левяков, “Уточненная геометрически нелинейная формулировка треугольного конечного элемента тонкой оболочки”, ПМТФ, 48:5 (2007), 160–172  mathnet


© МИАН, 2025