RUS  ENG
Полная версия
ЖУРНАЛЫ // Программные системы: теория и приложения

Программные системы: теория и приложения, 2015, том 6, выпуск 1, страницы 189–197 (Mi ps164)

A model and algorithm for sequence alignment
S. V. Znamenskij

Список литературы

1. J. W. Hunt, M. D. McIlroy, An algorithm for differential file comparison, Bell Laboratories, 1976, 7 pp.
2. E. W. Myers, “An $O(ND)$ difference algorithm and its variations”, Algorithmica, 1 (1986), 251–266  crossref  isi
3. W. R. Pearson, “Comparison of methods for searching protein sequence databases”, Protein Science, 4:6 (1995), 1145–1160  crossref  isi
4. T. F. Smith, M. S. Waterman, W. M. Fitch, “Comparative biosequence metrics”, Journal of Molecular Evolution, 18:1 (1981), 38–46  crossref  isi
5. P. Baudiš, Current concepts in version control systems, 2014, arXiv: 1405.3496
6. D. Aldous, P. Diaconis, “Longest Increasing Subsequences: From Patience Sorting to the Baik-Dieft-Johansson Theorem”, Bull. Amer. Math. Soc., 36:4 (1999), 413–432  crossref  isi
7. M. Mackall, “Towards a Better SCM: Revlog and Mercurial”, Proceedings of Linux Symposium (July 19–22, 2006, Ottawa, Ontario, Canada), v. 2, 2006, 83–90 http://mercurial.selenic.com/wiki/Presentations?action=AttachFile&do=get&target=ols-mercurial-paper.pdf
8. S. V. Znamenskij, “Modeling of the optimal sequence alignment problem”, Program systems: theory and applications, 5:4(22) (2014), 257–267 (in Russian)  mathnet
9. W. J. Masek, M. S. Paterson, “A faster algorithm computing string edit distances”, Journal of Computer and System Sciences, 20:1 (1980), 18–31  crossref  isi
10. J. W. Hunt, Th. G. Szymanski, “Computing Longest Common Subsequences”, Communications of the ACM, 20:5 (1977), 350–353  crossref
11. E. Ukkonen, “Algorithms for approximate string matching”, Information and Control, 64:1–3 (1985), 100–118  crossref  isi
12. E. W. Myers, W. Miller, “Optimal alignments in linear space”, Computer applications in the biosciences, 4:1 (1988), 11–17  isi
13. A. Apostolico, “String editing and longest common subsequences”, Handbook of Formal Languages, Springer, Berlin–Heidelberg, 1997, 361–398  crossref
14. A. G. Panin, “One algorithm to solve the longest common subsequence problem”, Vector nauki TGU, 2010, no. 4(14), 19–22 (in Russian)


© МИАН, 2025