RUS  ENG
Full version
JOURNALS // Program Systems: Theory and Applications

Program Systems: Theory and Applications, 2016, Volume 7, Issue 1, Pages 99–115 (Mi ps206)

Non-paradoxical logical consequence and the problem of solving ML-equations
Yu. M. Smetanin

References

1. A. Tarsky, “The semantic conception of truth and the foundations of semantics”, Philosophy and Phenomenology Research, 4:3 (1944), 341–376  crossref  mathscinet
2. Yu. M. Smetanin, “Algorithm for solving polisillogizm in the orthogonal basis by calculating the constituent sets”, Vestn. Udmurt·sk. un-ta. Matematika. Mekhanika. Komp'yuternyye nauki, 4 (2010), 172–185 (in Russian)  mathnet
3. Yu. M. Smetanin, “Polysemantic propositional logic with not paradoxical logical implication”, Devyatyye Smirnovskiye chteniya po logike, Materialy Mezhdunarodnoy nauchnoy konferentsii (Moskva, 19–21 iyunya 2015 g.), eds. Markin V. I., Gerasimova I. A., Zaytsev D. V., Karpenko A. S., Grigor'yev O. M., Tomova N. Ye., “Sovremennyye tetradi”, 2015, 160 (in Russian)
4. V. A. Bocharov, V. I. Markin, Syllogistic theories, Progress-Traditsiya, M., 2010, 336 pp. (in Russian)
5. Yu. M. Smetanin, “Solving Poretsky's logical equations in a model based on an algebraic system”, Teoriya upravleniya i modelirovaniye, Tezisy dokladov Vserossiyskoy konferentsii s mezhdunarodnym uchastiyem, posvyashchennoy pamyati professora N. V. Azbeleva i professora Ye. L. Tonkova (Izhevsk, Rossiya, 9–11 iyunya 2015 g.), Izd-vo “Udmurtskiy universitet”, Izhevsk, 2015, 299–301 (in Russian)
6. P. S. Poretskiy, On the ways to solve logical equation and one return method in mathematical logic, Sobraniye protokolov zasedaniy sektsii fiziko-matematicheskikh nauk obshchestva yestestvoispytateley pri Kazanskom universitete, v. 2, Kazan', 1884, 170 pp. (in Russian)
7. A. A. Semenov, “Decomposition representations of logical equations in problems of inversion of discrete functions”, Journal of Computer and Systems Sciences International, 48:5 (2009), 718–731  crossref  mathscinet  zmath  isi
8. L. Gil, P. Flores, L. M. Silveira, “PMSat: a parallel version of MiniSAT”, Journal on Satis fiability, Boolean Modeling and Computation, 6 (2008), 71–98  mathscinet
9. T. Schubert, M. Lewis, B. Beck, “PaMiraXT: Parallel SAT Solving with Threads and Message Passing”, Journal on Satisfiability, Boolean Modeling and Computation, 6 (2009), 203–222  zmath
10. O. S. Zaikin, A. A. Semenov, “Application of the Monte Carlo method for estimating the total time of solving the SAT problem in parallel”, Vychisl. Metody Programm., 15:1 (2014), 22–35 (in Russian)  mathnet
11. O. S. Zaikin, I. V. Otpushchennikov, A. A. Semenov, “Parallel algorithms of solving SAT as applied to optimization problems with Boolean constraints”, Parallel'nyye vychislitel'nyye tekhnologii, Trudy V Mezhdunarodnoy konferentsii PAVT 2011, MGU, M., 2011, 501–508 (in Russian)
12. M. Bohm, E. Speckenmeyer, “A fast parallel SAT solver — efficient workload balancing”, Annals of Mathematics and Artificial Intelligence, 17 (1996), 381–400  crossref  mathscinet  zmath  isi


© Steklov Math. Inst. of RAS, 2025