RUS  ENG
Full version
JOURNALS // Problemy Upravleniya

Probl. Upr., 2016, Issue 6, Pages 59–64 (Mi pu1002)

The approximation of envelope in «Network calculus» applications
A. A. Baybulatov, V. G. Promyslov

References

1. Le Boundec J.-Y., Thiran P., Network Calculus: A Theory of Deterministic Queuing Systems for the Internet, Online Version of the Book Springer Verlag, LNCS, Version April 26, 2012, 2050, 263 pp.
2. Cruz R. L., “A Calculus for Network Delay. Part I: Network Elements in Isolation”, IEEE Trans. on Information Theory, 37, Jan. (1991), 114–131
3. Cruz R. L., “A Calculus for Network Delay. Part II: Network Analysis Information Theory”, IEEE Trans. on Information Theory, 37, Jan. (1991), 132–141
4. Louis Baccelli, et al., Synchronization and Linearity An Algebra for Discrete Event Systems, Wiley Series in Probability and Statistics, John Wiley & Sons, N.-Y., 1992, 514 pp.
5. Masolkin S. I., Promyslov V. G., “Raschet nekotorykh parametrov promyshlennoi vychislitelnoi seti ob'ektov povyshennogo riska ekspluatatsii na primere ASUTP AES”, Problemy upravleniya, 2010, no. 1, 47–52  mathnet
6. Baibulatov A. A., “Metod rascheta garantirovannogo vremeni modifikatsii programmnogo obespecheniya”, Problemy upravleniya, 2016, no. 1, 58–64  mathnet
7. Vishnevskii V. M., Teoreticheskie osnovy proektirovaniya kompyuternykh setei, Tekhnosfera, M., 2003, 512 pp.
8. Syski R., “A personal view of queueing theory”, Frontiers in Queueing, CRC, Boca Raton–N.-Y.–London–Tokyo, 1997, 3–18
9. Network Calculus: An Inconvenient Truth and New Perspectives, ISS4E Seminar Series http://wise.uwaterloo.ca/calendar/iss4e_seminar_series_network_calculus_an_inconvenient_truth_and_new_ (data obrascheniya: 19.05.2016)
10. Ciucu F., Fidler M., Liebeherr J., Schmitt J., Report from Dagstuhl Seminar 15112 Network Calculus (March 8–11, 2015), 63–83
11. Zalgaller V. A., Teoriya ogibayuschikh, Nauka, M., 1975, 104 pp.
12. Braden R., Clark D., Shenker S., Network Working Group Request for Comments: 1633, Integrated Services in the Internet Architecture: an Overview, July 1994
13. Vapnik V. N., Statistical Learning Theory, John Wiley, N.-Y., 1998, 768 pp.
14. Smola A., Scholkopf B., A Tutorial on Support Vector Regression, NeuroCOLT2 Technical Report Series. NC2-TR-1998-030, October 1998, 71 pp.
15. Polyak B. T., Vvedenie v optimizatsiyu, Nauka, M., 1983, 384 pp.
16. Burges C. J. C., “A Tutorial on Support Vector Machines for Pattern Recognition”, Data Mining and Knowledge Discovery, v. 2, Kluwer Academic Publishers, Boston, 1998, 121–167


© Steklov Math. Inst. of RAS, 2025