RUS  ENG
Полная версия
ЖУРНАЛЫ // Проблемы управления

Пробл. управл., 2021, выпуск 3, страницы 16–24 (Mi pu1238)

Информационные сообщества в социальных сетевых структурах. Ч. 3. Прикладные аспекты выявления и анализа сообществ
Л. М. Бойко, Д. А. Губанов, И. В. Петров

ЛИТЕРАТУРА

1. Губанов Д. А., Петров И. В., “Информационные сообщества в социальных сетевых структурах. Ч. 1. От основного понятия к математическим моделям формирования”, Проблемы управления, 2021, № 1, 15–23  mathnet
2. Губанов Д. А., Петров И. В., “Информационные сообщества в социальных сетевых структурах. Ч. 2. Математические сетевые модели формирования сообществ”, Проблемы управления, 2021, № 2, 18–32  mathnet
3. Hung A.A., Plott C.R., “Information Cascades: Replication and an Extension to Majority Rule and Conformity-Rewarding Institutions”, American Economic Review, 91:5 (2001), 1508–1520
4. Kübler D., Weizsäcker G., “Limited Depth of Reasoning and Failure of Cascade Formation in the Laboratory”, The Review of Economic Studies, 71:2 (2004), 425–441
5. Choi S., Gale D., Kariv S., Behavioral Aspects of Learning in Social Networks: An Experimental Study, Emerald Group Publishing Limited, 2005
6. Chandrasekhar A.G., Larreguy H., Xandri J.P., “Testing Models of Social Learning on Networks: Evidence From Two Experiments”, Econometrica, 2020, no. 1 (88), 1–32
7. Grimm V., Mengel F., “Experiments on Belief Formation in Networks”, Journal of the European Economic Association, 18:1 (2020), 49–82
8. Acemoglu D., Ozdaglar A., “Opinion Dynamics and Learning in Social Networks”, Dynamic Games and Applications, 2011, no. 1 (1), 3–49
9. Golub B., Sadler E., Learning in Social Networks, 2017  crossref
10. Young J.G., Cantwell G.T., Newman M.E.J., Robust Bayesian Inference of Network Structure from Unreliable Data, 2020, arXiv: 2008.03334
11. Lovato J., Allard A., Harp R., Hébert-Dufresne L., Distributed Consent and Its Impact on Privacy and Observability in Social Networks, 2020, arXiv: 2006.16140
12. Perra N., Rocha L.E.C., “Modelling Opinion Dynamics in the Age of Algorithmic Personalisation”, Scientific Reports, 9:1 (2019), 1–11
13. Cheng J., Adamic L., Dow P.A., et al., Can Cascades Be Predicted?, Proceedings of the 23rd International Conference on World Wide Web, 2014, 925–936
14. Gentzkow M., Shapiro J.M., “Ideological Segregation Online and Offline”, The Quarterly Journal of Economics, 126:4 (2011), 1799–1839
15. Garimella K., Morales G.D.F., Gionis A., Mathioudakis M., “Quantifying Controversy on Social Media”, ACM Transactions on Social Computing, 1:1 (2018), 1–27
16. Garimella K. Morales G.D.F., Gionis A., Mathioudakis M., Political Discourse on Social Media: Echo Chambers, Gatekeepers, and the Price of Bipartisanship, 2018, arXiv: 1801.01665
17. Kumar S., Hamilton W.L., Leskovec J., Jurafsky D., “Community Interaction and Conflict on the Web”, Proceedings of the 2018 World Wide Web Conference, 2018, 933–943
18. Cota W., Ferreira S.C., Pastor-Satorras R., Starnini M., “Quantifying Echo Chamber Effects in Information Spreading over Political Communication Networks”, EPJ Data Science, 8:1 (2019), 35
19. Jasny L., Waggle J., Fisher D.R., “An Empirical Examination of Echo Chambers in US Climate Policy Networks”, Nature Climate Change, 5:8 (2015), 782–786
20. Del Vicario M., Vivaldo G., Bessi A., et al., “Echo Chambers: Emotional Contagion and Group Polarization on Facebook”, Scientific Reports, 6 (2016), 37825
21. Bakshy E., Messing S., Adamic L.A., “Exposure to Ideologically Diverse News and Opinion on Facebook”, Science, 348:6239 (2015), 1130–1132
22. Flaxman S., Goel S., Rao J.M., “Filter Bubbles, Echo Chambers, and Online News Consumption”, Public Opinion Quarterly, 80:S1 (2016), 298–320
23. Page L., Brin S., Motwani R., Winograd T., The PageRank Citation Ranking: Bringing Order to the Web, Stanford InfoLab, 1999
24. Karypis G., METIS: Unstructured Graph Partitioning and Sparse Matrix Ordering System, Technical Report, 1997
25. Rossi R.A., Jin D., Kim S., et al., “On Proximity and Structural Role-Based Embeddings in Networks: Misconceptions, Techniques, and Applications”, ACM Transactions on Knowledge Discovery from Data (TKDD), 14:5 (2020), 1–37
26. Chattopadhyay S., Ganguly D., Community Structure Aware Embedding of Nodes in a Network, 2020, arXiv: 2006.15313
27. Billings J.C.W., Hu M., Lerda G., et al., Simplex2Vec Embeddings for Community Detection in Simplicial Complexes, 2019, arXiv: 1906.09068
28. Rossi R.A., Jin D., Kim S., et al., From Community to Role-Based Graph Embeddings, 2019, arXiv: 1908.08572
29. Zhou X., Zafarani R., A Survey of Fake News: Fundamental Theories, Detection Methods, and Opportunities, 2018, arXiv: 1812.00315
30. Ma J., Gao W., Wong K.F., Detect Rumors in Microblog Posts Using Propagation Structure via Kernel Learning, Association for Computational Linguistics, 2017
31. Wu K., Yang S., Zhu K.Q., “False Rumors Detection on Sina Weibo by Propagation Structures”, 2015 IEEE 31st International Conference on Data Engineering, IEEE, 2015, 651–662


© МИАН, 2025