RUS  ENG
Full version
JOURNALS // Problemy Upravleniya

Probl. Upr., 2023, Issue 4, Pages 14–27 (Mi pu1319)

Models of joint dynamics of opinions and actions in online social networks. Part III: Binary models
D. A. Gubanov, D. A. Novikov

References

1. Gubanov, D.A., Novikov, D.A., “Models of Joint Dynamics of Opinions and Actions in Online Social Networks. Part I: Primary Data Analysis”, Control Sciences, 2023, no. 2, 31–45  mathnet
2. Gubanov, D.A., Novikov, D.A., “Models of Joint Dynamics of Opinions and Actions in Online Social Networks. Part II: Linear Models”, Control Sciences, 2023, no. 3, 31–54  mathnet
3. Gubanov, D. A., “A Study of Formalizations of User Influence in Actional Model”, Proceedings of the 13th International Conference “Management of Large-Scale System Development”, MLSD (Moscow, 2020), 1–5 https://ieeexplore.ieee.org/document/9247658
4. Gubanov, D.A., Chkhartishvili, A.G., “An Actional Model of User Influence Levels in a Social Network”, Automation and Remote Control, 76:7 (2015), 1282–1290  mathnet
5. Novikov, D.A., “Dynamics Models of Mental and Behavioral Components of Activity in Collective Decision-Making”, Large-Scale Systems Control, 85 (2020), 206–237 (In Russian)  mathnet
6. Novikov, D.A., Breer, V.V., Rogatkin, A.D., Upravlenie tolpoj: matematicheskie modeli porogovogo kollektivnogo povedeniya, LENAND, M., 2016, 168 pp. (In Russian)
7. Gubanov, D.A., Novikov, D.A., Chkhartishvili, A.G., Social Networks: Models of Information Influence, Control and Confrontation, Springer International Publishing, Switzerland, 2019, 158 pp.
8. Flache, A., Mas, M., Feliciani, T. et al., “Models of Social Influence: Towards the Next Frontiers”, The Journal of Artificial Societies and Social Simulation, 20:4 (2017)  crossref
9. Granovetter, M., “Threshold Models of Collective Behavior”, The American Journal of Sociology, 83:6 (1978), 1420–1443
10. Karimi, F., Holme, P., “Threshold Model of Cascades in Empirical Temporal Networks”, Physica A: Statistical Mechanics and Its Applications, 392:16 (2013), 3476–3483
11. Kempe, D., Kleinberg, J., Tardos, E., “Maximizing the Spread of Influence through a Social Network”, Theory of Computing, 11:4 (2015), 105–147
12. Schelling, T., Micromotives and Macrobehaviour, Norton & Co Ltd, London–New York, 1978, 256 pp.
13. Semenov, A., Veremyev, A., Pasiliao, E. L., Boginski, V., “Double-Threshold Models for Network Influence Propagation”, Computational Data and Social Networks, 9th International Conference, CSoNet 2020 (Dallas, 2020), 512–523
14. Brodersen, K., Ong, C., Stephan, K., Buhmann, J., “The Balanced Accuracy and Its Posterior Distribution”, Proceedings of the 20th International Conference on Pattern Recognition (Istanbul, 2010), 3121–3124
15. Elliott, R. J., Aggoun, L., Moore, J. B., Hidden Markov Models: Estimation and Control, Springer Science & Business Media, Luxembourg, 2008
16. Koller, D., Friedman, N., Probabilistic Graphical Models: Principles and Techniques, MIT Press, 2009
17. Nikiforov, I.V., Posledovatel'noe obnaruzhenie izmeneniya svojstv vremennyh ryadov, Nauka, M., 1983, 199 pp. (In Russian)
18. Darhovskij, B.S., Brodskij, B.E., “Aposteriornoe obnaruzhenie momenta «razladki» sluchajnoj posledovatel'nosti”, Teoriya veroyatnostej i ee primeneniya, 25:3 (1980), 635–639 (In Russian)  mathnet


© Steklov Math. Inst. of RAS, 2025