|
|
|
ЛИТЕРАТУРА
|
|
|
1. |
Зак Ю. А., “Решение обобщенной задачи Джонсона с ограничениями на сроки выполнения заданий и времена работы машин. I: Точные методы решения”, Проблемы управления, 2010, № 3, 17–25 |
2. |
Johnson S. M., “Optimal two- and tree-stage production schedules with setup times included”, Research Logistics Quarterly, 1 (1954), 61–68 |
3. |
Domschke W., Scholl A., Voß S., Produktionsplanung. Ablauforganisatorische Aspekte, Springer Verlag, Berlin, 1997, 456 pp. |
4. |
Hundal T. S., Rajgopal J., “An extension of Palmer's heuristic for the flow-shop scheduling problem”, International Journal of Production Research, 26 (1988), 1119–1124 |
5. |
Gupta J. N. D., “A functional heuristic algorithm for the flow-shop scheduling problem”, Operational Research Quarterly, 2 (1971), 39–47 |
6. |
Cambell H. G., Dudek R. A., Smith M. L., “A heuristic algorithm for the $n$ job, $m$ machine sequencing problem”, Management Science, 16 (1970), 630–637 |
7. |
Dannenbring D. G., “A evaluation of flow shop sequencing heuristics”, Management Science, 23 (1977), 1174–1182 |
8. |
Ho J. C., Chang Y.-L., “A new heuristic for the $n$-job, $M$-machine problem”, European Journal of Operational Research, 52 (1991), 194–202 |
9. |
Ishibuchi H., Misaki S., Tanaka H., “Modived simulated annealing algorithms for the flow shop sequencing problem”, European Journal of Operational Research, 81 (1995), 388–398 |
10. |
Ogbu F.A., Smith D. K., “Simulated annealing for the permutation flow shop problem”, OMEGA, 19:1 (1991), 64–67 |
11. |
Nawaz M., Enscore E. E., Ham I., “A heuristic algorithm for the $m$-mashine, $n$-job flow-shop sequencing problem”, OMEGA, 11 (1983), 91–95 |
12. |
Brucker P., Scheduling algorithms, Springer Verlag, Berlin, 1995 |
13. |
Blazewicz J., Domschke W., Pesch E., “The job shop scheduling problem: Conventional and new solution techniques”, European Journal of Operational Research, 93 (1996), 1–33 |
14. |
Lageweg B. J., Lenstra J. K., Rinnooy Kann A. H. G., “A general bounding scheme for the permutation flow-shop problem”, Operations Research, 26 (1978), 53–67 |
15. |
Танаев В. С., Ковалëв М. Я., Шафранский Я. М., Теория расписаний. Групповые технологии, Ин-т техн. кибернетики НАН Беларуси, Минск, 1998, 289 с. |
16. |
Танаев В. С., Сотсков Ю. Н., Струсевич В. А., Теория расписаний. Многостадийные системы, URSS, М., 1989, 328 с. |
17. |
Ogbu F. A., Smith D. K., “The application of the simulated annealing algorithm to the solution of the $n/m/C_{max}$ flow shop problem”, Computer & Operations Research, 17 (1990), 243–253 |
18. |
Cleveland G. A., Smith S. F., “Using genetic algorithms to schedule flow shop releases”, Proc. of the third international conference on genetic algorithms, Morgan Kaufmann, San Mateo, 1989, 160–169 |
19. |
Reeves C. R., “A genetic algorithm for flow shop sequenching”, Computer & Operations Research, 22 (1995), 5–13 |
20. |
Palmer D. S., “Sequencing job trough a multi-stage process in the minimum total time – a quick method of obtaining a near optimum”, Operations Research Quarterly, 16 (1965), 101–107 |