RUS  ENG
Полная версия
ЖУРНАЛЫ // Успехи математических наук

УМН, 2024, том 79, выпуск 1(475), страницы 135–184 (Mi rm10141)

Диффеоморфизмы Морса–Смейла с неблуждающими точками попарно различных индексов Морса на 3-многообразиях
О. В. Починка, Е. А. Таланова

Список литературы

1. V. S. Afraimovich, M. I. Rabinovich, P. Varona, “Heteroclinic contours in neural ensembles and the winnerless competition principle”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 14:4 (2004), 1195–1208  crossref  mathscinet  zmath
2. P. M. Akhmet'ev, T. V. Medvedev, O. V. Pochinka, “On the number of the classes of topological conjugacy of Pixton diffeomorphisms”, Qual. Theory Dyn. Syst., 20:3 (2021), 76, 15 pp.  crossref  mathscinet  zmath
3. А. Андронов, Л. С. Понтрягин, “Грубые системы”, Докл. АН СССР, 14:5 (1937), 247–250  zmath
4. А. Н. Безденежных, В. З. Гринес, “Динамические свойства и топологическая классификация градиентноподобных диффеоморфизмов на двумерных многообразиях. I”, Методы качественной теории дифференциальных уравнений, Межвуз. темат. сб. науч. тр., Горьк. гос. ун-т, Горький, 1984, 22–38  mathscinet  mathscinet  zmath; англ. пер.: A. N. Bezdenezhnykh, V. Z. Grines, “Dynamical properties and topological classification of gradient-like diffeomorphisms on two-dimensional manifolds. I”, Selecta Math. Soviet., 11:1 (1992), 1–11
5. А. Н. Безденежных, В. З. Гринес, “Реализация градиентноподобных диффеоморфизмов двумерных многообразий”, Дифференциальные и интегральные уравнения, Сб. науч. тр., Изд-во Горьковск. ун-та, Горький, 1985, 33–37  mathscinet  mathscinet  zmath; англ. пер.: A. N. Bezdenezhnykh, V. Z. Grines, “Realization of gradient-like diffeomorphisms of two-dimensional manifolds”, Selecta Math. Soviet., 11:1 (1992), 19–23
6. А. Н. Безденежных, В. З. Гринес, “Динамические свойства и топологическая классификация градиентноподобных диффеоморфизмов на двумерных многообразиях. II”, Методы качественной теории дифференциальных уравнений, Межвуз. темат. сб. науч. тр., Изд-во Горьковск. ун-та, Горький, 1987, 24–31  mathscinet  mathscinet  zmath; англ. пер.: A. N. Bezdenezhnykh, V. Z. Grines, “Dynamical properties and topological classification of gradient-like diffeomorphisms on two-dimensional manifolds. II”, Selecta Math. Soviet., 11:1 (1992), 13–17
7. C. Bonatti, V. Z. Grines, “Knots as topological invariant for gradient-like diffeomorphisms of the sphere $S^3$”, J. Dynam. Control Systems, 6:4 (2000), 579–602  crossref  mathscinet  zmath
8. Ch. Bonatti, V. Grines, F. Laudenbach, O. Pochinka, “Topological classification of Morse–Smale diffeomorphisms without heteroclinic curves on 3-manifolds”, Ergodic Theory Dynam. Systems, 39:9 (2019), 2403–2432  crossref  mathscinet  zmath
9. Х. Бонатти, В. З. Гринес, В. C. Медведев, Е. Пеку, “О диффеоморфизмах Морса–Смейла без гетероклинических пересечений на трехмерных многообразиях”, Дифференциальные уравнения и динамические системы, Сборник статей. К 80-летию со дня рождения академика Евгения Фроловича Мищенко, Труды МИАН, 236, Наука, МАИК “Наука/Интерпериодика”, М., 2002, 66–78  mathnet  mathscinet  zmath; англ. пер.: Ch. Bonatti, V. Z. Grines, V. S. Medvedev, E. Pécou, “On Morse–Smale diffeomorphisms without heteroclinic intersections on three-manifolds”, Proc. Steklov Inst. Math., 236 (2002), 58–69
10. C. Bonatti, V. Grines, V. Medvedev, E. Pecou, “Three-manifolds admitting Morse–Smale diffeomorphisms without heteroclinic curves”, Topology Appl., 117:3 (2002), 335–344  crossref  mathscinet  zmath
11. C. Bonatti, V. Grines, V. Medvedev, E. Pécou, “Topological classification of gradient-like diffeomorphisms on 3-manifolds”, Topology, 43:2 (2004), 369–391  crossref  mathscinet  zmath
12. Х. Бонатти, В. З. Гринес, О. В. Починка, “Классификация диффеоморфизмов Морса–Смейла с конечным множеством гетероклинических орбит на 3-многообразиях”, Докл. РАН, 396:4 (2004), 439–442  mathnet  mathscinet  zmath; англ. пер.: Ch. Bonatti, V. Z. Grines, O. V. Pochina, “Classification of Morse–Smale diffeomorphisms with finite sets of heteroclinic orbits on 3-manifolds”, Dokl. Math., 69:3 (2004), 385–387
13. Х. Бонатти, В. З. Гринес, О. В. Починка, “Реализация диффеоморфизмов Морса–Смейла на $3$-многообразиях”, Порядок и хаос в динамических системах, Сборник статей. К 80-летию со дня рождения академика Дмитрия Викторовича Аносова, Труды МИАН, 297, МАИК “Наука/Интерпериодика”, М., 2017, 46–61  mathnet  crossref  mathscinet  zmath; англ. пер.: Ch. Bonatti, V. Z. Grines, O. V. Pochinka, “Realization of Morse–Smale diffeomorphisms on 3-manifolds”, Proc. Steklov Inst. Math., 297 (2017), 35–49  crossref
14. C. Bonatti, V. Grines, O. Pochinka, “Topological classification of Morse–Smale diffeomorphisms on 3-manifolds”, Duke Math. J., 168:13 (2019), 2507–2558  crossref  mathscinet  zmath
15. C. Bonatti, R. Langevin, Difféomorphismes de Smale des surfaces, With the collaboration of E. Jeandenans, Astérisque, 250, Soc. Math. France, Paris, 1998, viii+235 pp.  mathscinet  zmath
16. G. Fleitas, “Classification of gradient-like flows on dimensions two and three”, Bol. Soc. Brasil. Mat., 6:2 (1975), 155–183  crossref  mathscinet  zmath
17. В. З. Гринес, “Топологическая классификация диффеомоpфизмов Моpса–Смейла с конечным множеством гетеpоклинических тpаектоpий на повеpхностях”, Матем. заметки, 54:3 (1993), 3–17  mathnet  mathscinet  zmath; англ. пер.: V. Z. Grines, “Topological classification of Morse–Smale diffeomorphisms with finite set of heteroclinic trajectories on surfaces”, Math. Notes, 54:3 (1993), 881–889  crossref
18. В. З. Гринес, Е. Я. Гуревич, “Комбинаторный инвариант градиентно-подобных потоков на связной сумме $\mathbb S^{n-1}\times \mathbb S^1$”, Матем. сб., 214:5 (2023), 97–127  mathnet  crossref  mathscinet; англ. пер.: V. Z. Grines, E. Ya. Gurevich, “A combinatorial invariant of gradient-like flows on a connected sum of $\mathbb{S}^{n-1}\times\mathbb{S}^1$”, Sb. Math., 214:5 (2023), 703–731  crossref
19. В. З. Гринес, Е. Я. Гуревич, “Топологическая классификация потоков без гетероклинических траекторий на связной сумме многообразий $\mathbb{S}^{n-1}\times \mathbb{S}^{1}$”, УМН, 77:4(466) (2022), 201–202  mathnet  crossref  mathscinet; Russian Math. Surveys, 77:4 (2022), 759–761  crossref
20. В. З. Гринес, Е. Я. Гуревич, О. В. Починка, “Энергетическая функция градиентно-подобных потоков и проблема топологической классификации”, Матем. заметки, 96:6 (2014), 856–863  mathnet  crossref  mathscinet  zmath; англ. пер.: V. Z. Grines, E. Ya. Gurevich, O. V. Pochinka, “The energy function of gradient-like flows and the topological classification problem”, Math. Notes, 96:6 (2014), 921–927  crossref
21. В. З. Гринес, Е. Я. Гуревич, О. В. Починка, “О включении диффеоморфизмов Морса–Смейла на сфере в топологический поток”, УМН, 71:6(432) (2016), 163–164  mathnet  crossref  mathscinet  zmath  adsnasa; Russian Math. Surveys, 71:6 (2016), 1146–1148  crossref
22. В. З. Гринес, Е. Я. Гуревич, Е. В. Жужома, О. В. Починка, “Классификация систем Морса–Смейла и топологическая структура несущих многообразий”, УМН, 74:1(445) (2019), 41–116  mathnet  crossref  mathscinet  zmath; англ. пер.: V. Z. Grines, E. Ya. Gurevich, E. V. Zhuzhoma, O. V. Pochinka, “Classification of Morse–Smale systems and topological structure of the underlying manifolds”, Russian Math. Surveys, 74:1 (2019), 37–110  crossref  adsnasa
23. В. З. Гринес, Х. Х. Калай, “О топологической классификации градиентноподобных диффеоморфизмов на неприводимых трехмерных многообразиях”, УМН, 49:2(296) (1994), 149–150  mathnet  mathscinet  zmath  adsnasa; Russian Math. Surveys, 49:2 (1994), 157–158  crossref
24. В. З. Гринес, С. Х. Капкаева, О. В. Починка, “Трехцветный граф как полный топологический инвариант для градиентно-подобных диффеоморфизмов поверхностей”, Матем. сб., 205:10 (2014), 19–46  mathnet  crossref  mathscinet  zmath; англ. пер.: V. Z. Grines, S. Kh. Kapkaeva, O. V. Pochinka, “A three-colour graph as a complete topological invariant for gradient-like diffeomorphisms of surfaces”, Sb. Math., 205:10 (2014), 1387–1412  crossref  adsnasa
25. V. Z. Grines, T. V. Medvedev, O. V. Pochinka, Dynamical systems on 2- and 3-manifolds, Dev. Math., 46, Springer, Cham, 2016, xxvi+295 pp.  crossref  mathscinet  zmath
26. V. Grines, T. Medvedev, O. Pochinka, E. Zhuzhoma, “On heteroclinic separators of magnetic fields in electrically conducting fluids”, Phys. D, 294 (2015), 1–5  crossref  mathscinet  zmath
27. V. Grines, O. Pochinka, “On topological classification of Morse–Smale diffeomorphisms”, Dynamics, games and science. II (Univ. of Minho, Braga, 2008), Springer Proc. Math., 2, Springer, Heidelberg, 2011, 403–427  crossref  mathscinet  zmath
28. В. З. Гринес, О.В. Починка, “Каскады Морса–Смейла на 3-многообразиях”, УМН, 68:1(409) (2013), 129–188  mathnet  crossref  mathscinet  zmath  adsnasa; Russian Math. Surveys, 68:1 (2013), 117–173  crossref
29. В. З. Гринес, Е. В. Жужома, В. С. Медведев, “Новые соотношения для систем Морса–Смейла с тривиально вложенными одномерными сепаратрисами”, Матем. сб., 194:7 (2003), 25–56  mathnet  crossref  mathscinet  zmath; англ. пер.: V. Z. Grines, E. V. Zhuzhoma, V. S. Medvedev, “New relations for Morse–Smale systems with trivially embedded one-dimensional separatrices”, Sb. Math., 194:7 (2003), 979–1007  crossref  adsnasa
30. В. З. Гринес, Е. В. Жужома, В. С. Медведев, О. В. Починка, “Глобальные аттрактор и репеллер диффеоморфизмов Морса–Смейла”, Дифференциальные уравнения и топология. II, Сборник статей. К 100-летию со дня рождения академика Льва Семеновича Понтрягина, Труды МИАН, 271, МАИК “Наука/Интерпериодика”, М., 2010, 111–133  mathnet  mathscinet  zmath; англ. пер.: V. Z. Grines, E. V. Zhuzhoma, V. S. Medvedev, O. V. Pochinka, “Global attractor and repeller of Morse–Smale diffeomorphisms”, Proc. Steklov Inst. Math., 271 (2010), 103–124  crossref
31. В. З. Гринес, Е. В. Жужома, О. В. Починка, “Динамические системы и топология магнитных полей в проводящей среде”, Дифференциальные и функционально-дифференциальные уравнения, СМФН, 63, № 3, РУДН, М., 2017, 455–474  mathnet  mathscinet  zmath; англ. пер.: V. Z. Grines, E. V. Zhuzhoma, O. V. Pochinka, “Dynamical systems and topology of magnetic fields in conducting medium”, J. Math. Sci. (N. Y.), 253:5 (2021), 676–691  crossref
32. В. Гуревич, Г. Волмэн, Теория размерности, ИЛ, М., 1948, 232 с.; пер. с англ.: W. Hurewicz, H. Wallman, Dimension theory, Princeton Univ. Press, Princeton, NJ, 1948, vii+165 с.  mathscinet  zmath
33. P. Kirk, C. Livingston, “Knot invariants in 3-manifolds and essential tori”, Pacific J. Math., 197:1 (2001), 73–96  crossref  mathscinet  zmath
34. V. E. Kruglov, D. S. Malyshev, O. V. Pochinka, D. D. Shubin, “On topological classification of gradient-like flows on an $n$-sphere in the sense of topological conjugacy”, Regul. Chaotic Dyn., 25:6 (2020), 716–728  mathnet  crossref  mathscinet  zmath  adsnasa
35. Е. В. Круглов, Е. А. Таланова, “О реализации диффеоморфизмов Морса–Смейла с гетероклиническими кривыми на трехмерной сфере”, Дифференциальные уравнения и динамические системы, Сборник статей. К 80-летию со дня рождения академика Евгения Фроловича Мищенко, Труды МИАН, 236, Наука, МАИК “Наука/Интерпериодика”, М., 2002, 212–217  mathnet  mathscinet  zmath; англ. пер.: E. V. Kruglov, E. A. Talanova, “On the realization of Morse–Smale diffeomorphisms with heteroclinic curves on a 3-sphere”, Proc. Steklov Inst. Math., 236 (2002), 201–205
36. Е. А. Леонтович, А. Г. Майеp, “О тpаектоpиях, опpеделяющих качественную стpуктуpу pазбиения сфеpы на тpаектоpии”, Докл. АН СССP, 14:5 (1937), 251–257  zmath
37. Е. А. Леонтович, А. Г. Майеp, “О схеме, опpеделяющей топологическую стpуктуpу pазбиения на тpаектоpии”, Докл. АН СССP, 103:4 (1955), 557–560  mathscinet  zmath
38. D. Malyshev, A. Morozov, O. Pochinka, “Combinatorial invariant for Morse–Smale diffeomorphisms on surfaces with orientable heteroclinic”, Chaos, 31:2 (2021), 023119, 17 pp.  crossref  mathscinet  zmath  adsnasa
39. B. Mazur, “A note on some contractible 4-manifolds”, Ann. of Math. (2), 73:1 (1961), 221–228  crossref  mathscinet  zmath
40. Дж. Милнор, Теорема об $h$-кобордизме, Мир, М., 1969, 115 с.  mathscinet; пер. с англ.: J. Milnor, Lectures on the $h$-cobordism theorem, Notes by L. Siebenmann and J. Sondow, Princeton Univ. Press, Princeton, NJ, 1965, v+116 с.  mathscinet  zmath
41. Т. М. Митрякова, О. В. Починка, “О необходимых и достаточных условиях топологической сопряженности диффеоморфизмов поверхностей с конечным числом орбит гетероклинического касания”, Дифференциальные уравнения и динамические системы, Сборник статей, Труды МИАН, 270, МАИК “Наука/Интерпериодика”, М., 2010, 198–219  mathnet  mathscinet  zmath; англ. пер.: T. M. Mitryakova, O. V. Pochinka, “Necessary and sufficient conditions for the topological conjugacy of surface diffeomorphisms with a finite number of orbits of heteroclinic tangency”, Proc. Steklov Inst. Math., 270 (2010), 194–215  crossref
42. J. Munkres, “Obstructions to the smoothing of piecewise-differentiable homeomorphisms”, Ann. of Math. (2), 72:3 (1960), 521–554  crossref  mathscinet  zmath
43. W. D. Neumann, “Notes on geometry and 3-manifolds”, Low dimensional topology (Eger, 1996/Budapest, 1998), Bolyai Soc. Math. Stud., 8, János Bolyai Math. Soc., Budapest, 1999, 191–267  mathscinet  zmath
44. А. А. Ошемков, В. В. Шарко, “О классификации потоков Морса–Смейла на двумерных многообразиях”, Матем. сб., 189:8 (1998), 93–140  mathnet  crossref  mathscinet  zmath; англ. пер.: A. A. Oshemkov, V. V. Sharko, “Classification of Morse–Smale flows on two-dimensional manifolds”, Sb. Math., 189:8 (1998), 1205–1250  crossref  adsnasa
45. J. Palis, “On Morse–Smale dynamical systems”, Topology, 8:4 (1969), 385–404  crossref  mathscinet  zmath
46. Дж. Пали, С. Смейл, “Теоремы структурной устойчивости”, Математика, 13:2 (1969), 145–155  mathnet; пер. с англ.: J. Palis, S. Smale, “Structural stability theorems”, Global analysis (Berkeley, CA, 1968), Proc. Sympos. Pure Math., 14, Amer. Math. Soc., Providence, RI, 1970, 223–231  mathscinet  zmath
47. M. M. Peixoto, “Structural stability on two-dimensional manifolds”, Topology, 1:2 (1962), 101–120  crossref  mathscinet  zmath
48. M. Peixoto, “Structural stability on two-dimensional manifolds: a further remark”, Topology, 2:1-2 (1963), 179–180  crossref  mathscinet  zmath
49. M. M. Peixoto, “On the classification of flows on 2-manifolds”, Dynamical systems (Univ. Bahia, Salvador, 1971), Academic Press, Inc., New York–London, 1973, 389–419  crossref  mathscinet  zmath
50. С. Ю. Пилюгин, “Фазовые диаграммы, определяющие системы Морса–Смейла без периодических траекторий на сферах”, Дифференц. уравнения, 14:2 (1978), 245–254  mathnet  mathscinet  zmath; англ. пер.: S. Ju. Piljugin, “Phase diagrams determining Morse–Smale systems without periodic trajectories on spheres”, Differ. Equ., 14:2 (1978), 170–177
51. D. Pixton, “Wild unstable manifolds”, Topology, 16:2 (1977), 167–172  crossref  mathscinet  zmath
52. O. Pochinka, “Diffeomorphisms with mildly wild frame of separatrices”, Univ. Iagel. Acta Math., 47 (2009), 149–154  mathscinet  zmath
53. О. В. Починка, Д. Д. Шубин, “Неособые потоки Морса–Смейла с тремя периодическими орбитами на ориентируемых $3$-многообразиях”, Матем. заметки, 112:3 (2022), 426–443  mathnet  crossref  mathscinet  zmath; англ. пер.: O. V. Pochinka, D. D. Shubin, “Nonsingular Morse–Smale flows with three periodic orbits on orientable $3$-manifolds”, Math. Notes, 112:3 (2022), 436–450  crossref
54. O. V. Pochinka, D. D. Shubin, “Non-singular Morse–Smale flows on $n$-manifolds with attractor-repeller dynamics”, Nonlinearity, 35:3 (2022), 1485–1499  crossref  mathscinet  zmath  adsnasa
55. О. В. Починка, Е. А. Таланова, “Минимизация числа гетероклинических кривых 3-диффеоморфизма с неподвижными точками, имеющими попарно различные индексы Морса”, ТМФ, 215:2 (2023), 311–317  mathnet  crossref  mathscinet  zmath; англ. пер.: O. V. Pochinka, E. A. Talanova, “Minimizing the number of heteroclinic curves of a 3-diffeomorphism with fixed points with pairwise different Morse indices”, Theoret. and Math. Phys., 215:2 (2023), 729–734  crossref  adsnasa
56. O. Pochinka, E. Talanova, On the topology of 3-manifolds admitting Morse–Smale diffeomorphisms with four fixed points of pairwise different Morse indices, Cornell Univ., Working paper, 2023, 30 pp., arXiv: 2306.02814
57. О. В. Починка, Е. А. Таланова, Д. Д. Шубин, “Узел как полный инвариант 3-диффеоморфизмов Морса–Смейла с четырьмя неподвижными точками”, Матем. сб., 214:8 (2023), 94–107  mathnet  crossref; англ. пер.: O. Pochinka, E. Talanova, D. Shubin, Knot as a complete invariant of a Morse–Smale 3-diffeomorphism with four fixed points, 2022, 13 с., arXiv: 2209.04815
58. E. R. Priest, Solar magneto-hydrodynamics, D. Reidel Publishing Co., Dordrecht, 1982, xix+469 pp.  crossref
59. E. Priest, T. Forbes, Magnetic reconnection. MHD theory and applications, Cambridge Univ. Press, Cambridge, 2000, xii+600 pp.  crossref  mathscinet  zmath
60. А. О. Пришляк, “Полный топологический инвариант потоков Морса–Смейла и разложений на ручки трехмерных многообразий”, Фундамент. и прикл. матем., 11:4 (2005), 185–196  mathnet  mathscinet  zmath; англ. пер.: A. Prishlyak, “Complete topological invariants of Morse–Smale flows and handle decompositions of 3-manifolds”, J. Math. Sci. (N.Y.), 144:5 (2007), 4492–4499  crossref
61. D. Rolfsen, Knots and links, Math. Lecture Ser., 7, Corr. reprint of the 1976 original, Publish or Perish, Inc., Houston, TX, 1990, xiv+439 pp.  mathscinet  zmath
62. В. И. Шмуклер, О. В. Починка, “Бифуркации, меняющие тип гетероклинических кривых 3-диффеоморфизма Морса–Смейла”, ТВИМ, 2021, № 1, 101–114  mathnet
63. Д. Д. Шубин, “Топология несущих многообразий несингулярных потоков с тремя нескрученными орбитами”, Изв. вузов. ПНД, 29:6 (2021), 863–868  mathnet  crossref
64. С. Смейл, “Неравенства Морса для динамических систем”, Математика, 11:4 (1967), 79–87  mathnet; пер. с англ.: S. Smale, “Morse inequalities for a dynamical system”, Bull. Amer. Math. Soc., 66 (1960), 43–49  crossref  mathscinet  zmath
65. Я. Л. Уманский, “Необходимые и достаточные условия топологической эквивалентности трехмерных динамических систем Морса–Смейла с конечным числом особых траекторий”, Матем. сб., 181:2 (1990), 212–239  mathnet  mathscinet  zmath; англ. пер.: Ya. L. Umanskiĭ, “Necessary and sufficient conditions for topological equivalence of three-dimensional Morse–Smale dynamical systems with a finite number of singular trajectories”, Math. USSR-Sb., 69:1 (1991), 227–253  crossref  adsnasa


© МИАН, 2025