|
|
|
Список литературы
|
|
|
1. |
V. S. Afraimovich, M. I. Rabinovich, P. Varona, “Heteroclinic contours in neural ensembles and the winnerless competition principle”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 14:4 (2004), 1195–1208 |
2. |
P. M. Akhmet'ev, T. V. Medvedev, O. V. Pochinka, “On the number of the classes of topological conjugacy of Pixton diffeomorphisms”, Qual. Theory Dyn. Syst., 20:3 (2021), 76, 15 pp. |
3. |
А. Андронов, Л. С. Понтрягин, “Грубые системы”, Докл. АН СССР, 14:5 (1937), 247–250 |
4. |
А. Н. Безденежных, В. З. Гринес, “Динамические свойства и топологическая классификация градиентноподобных диффеоморфизмов на двумерных многообразиях. I”, Методы качественной теории дифференциальных уравнений, Межвуз. темат. сб. науч. тр., Горьк. гос. ун-т, Горький, 1984, 22–38 ; англ. пер.: A. N. Bezdenezhnykh, V. Z. Grines, “Dynamical properties and topological classification of gradient-like diffeomorphisms on two-dimensional manifolds. I”, Selecta Math. Soviet., 11:1 (1992), 1–11 |
5. |
А. Н. Безденежных, В. З. Гринес, “Реализация градиентноподобных диффеоморфизмов двумерных многообразий”, Дифференциальные и интегральные уравнения, Сб. науч. тр., Изд-во Горьковск. ун-та, Горький, 1985, 33–37 ; англ. пер.: A. N. Bezdenezhnykh, V. Z. Grines, “Realization of gradient-like diffeomorphisms of two-dimensional manifolds”, Selecta Math. Soviet., 11:1 (1992), 19–23 |
6. |
А. Н. Безденежных, В. З. Гринес, “Динамические свойства и топологическая классификация градиентноподобных диффеоморфизмов на двумерных многообразиях. II”, Методы качественной теории дифференциальных уравнений, Межвуз. темат. сб. науч. тр., Изд-во Горьковск. ун-та, Горький, 1987, 24–31 ; англ. пер.: A. N. Bezdenezhnykh, V. Z. Grines, “Dynamical properties and topological classification of gradient-like diffeomorphisms on two-dimensional manifolds. II”, Selecta Math. Soviet., 11:1 (1992), 13–17 |
7. |
C. Bonatti, V. Z. Grines, “Knots as topological invariant for gradient-like diffeomorphisms of the sphere $S^3$”, J. Dynam. Control Systems, 6:4 (2000), 579–602 |
8. |
Ch. Bonatti, V. Grines, F. Laudenbach, O. Pochinka, “Topological classification of Morse–Smale diffeomorphisms without heteroclinic curves on 3-manifolds”, Ergodic Theory Dynam. Systems, 39:9 (2019), 2403–2432 |
9. |
Х. Бонатти, В. З. Гринес, В. C. Медведев, Е. Пеку, “О диффеоморфизмах Морса–Смейла без гетероклинических пересечений на трехмерных многообразиях”, Дифференциальные уравнения и динамические системы, Сборник статей. К 80-летию со дня рождения академика Евгения Фроловича Мищенко, Труды МИАН, 236, Наука, МАИК “Наука/Интерпериодика”, М., 2002, 66–78 ; англ. пер.: Ch. Bonatti, V. Z. Grines, V. S. Medvedev, E. Pécou, “On Morse–Smale diffeomorphisms without heteroclinic intersections on three-manifolds”, Proc. Steklov Inst. Math., 236 (2002), 58–69 |
10. |
C. Bonatti, V. Grines, V. Medvedev, E. Pecou, “Three-manifolds admitting Morse–Smale diffeomorphisms without heteroclinic curves”, Topology Appl., 117:3 (2002), 335–344 |
11. |
C. Bonatti, V. Grines, V. Medvedev, E. Pécou, “Topological classification of gradient-like diffeomorphisms on 3-manifolds”, Topology, 43:2 (2004), 369–391 |
12. |
Х. Бонатти, В. З. Гринес, О. В. Починка, “Классификация диффеоморфизмов Морса–Смейла с конечным множеством гетероклинических орбит на 3-многообразиях”, Докл. РАН, 396:4 (2004), 439–442 ; англ. пер.: Ch. Bonatti, V. Z. Grines, O. V. Pochina, “Classification of Morse–Smale diffeomorphisms with finite sets of heteroclinic orbits on 3-manifolds”, Dokl. Math., 69:3 (2004), 385–387 |
13. |
Х. Бонатти, В. З. Гринес, О. В. Починка, “Реализация диффеоморфизмов Морса–Смейла на $3$-многообразиях”, Порядок и хаос в динамических системах, Сборник статей. К 80-летию со дня рождения академика Дмитрия Викторовича Аносова, Труды МИАН, 297, МАИК “Наука/Интерпериодика”, М., 2017, 46–61 ; англ. пер.: Ch. Bonatti, V. Z. Grines, O. V. Pochinka, “Realization of Morse–Smale diffeomorphisms on 3-manifolds”, Proc. Steklov Inst. Math., 297 (2017), 35–49 |
14. |
C. Bonatti, V. Grines, O. Pochinka, “Topological classification of Morse–Smale diffeomorphisms on 3-manifolds”, Duke Math. J., 168:13 (2019), 2507–2558 |
15. |
C. Bonatti, R. Langevin, Difféomorphismes de Smale des surfaces, With the collaboration of E. Jeandenans, Astérisque, 250, Soc. Math. France, Paris, 1998, viii+235 pp. |
16. |
G. Fleitas, “Classification of gradient-like flows on dimensions two and three”, Bol. Soc. Brasil. Mat., 6:2 (1975), 155–183 |
17. |
В. З. Гринес, “Топологическая классификация диффеомоpфизмов Моpса–Смейла с конечным множеством гетеpоклинических тpаектоpий на повеpхностях”, Матем. заметки, 54:3 (1993), 3–17 ; англ. пер.: V. Z. Grines, “Topological classification of Morse–Smale diffeomorphisms with finite set of heteroclinic trajectories on surfaces”, Math. Notes, 54:3 (1993), 881–889 |
18. |
В. З. Гринес, Е. Я. Гуревич, “Комбинаторный инвариант градиентно-подобных потоков на связной сумме $\mathbb S^{n-1}\times \mathbb S^1$”, Матем. сб., 214:5 (2023), 97–127 ; англ. пер.: V. Z. Grines, E. Ya. Gurevich, “A combinatorial invariant of gradient-like flows on a connected sum of $\mathbb{S}^{n-1}\times\mathbb{S}^1$”, Sb. Math., 214:5 (2023), 703–731 |
19. |
В. З. Гринес, Е. Я. Гуревич, “Топологическая классификация потоков без гетероклинических траекторий на связной сумме многообразий $\mathbb{S}^{n-1}\times \mathbb{S}^{1}$”, УМН, 77:4(466) (2022), 201–202 ; Russian Math. Surveys, 77:4 (2022), 759–761 |
20. |
В. З. Гринес, Е. Я. Гуревич, О. В. Починка, “Энергетическая функция градиентно-подобных потоков и проблема топологической классификации”, Матем. заметки, 96:6 (2014), 856–863 ; англ. пер.: V. Z. Grines, E. Ya. Gurevich, O. V. Pochinka, “The energy function of gradient-like flows and the topological classification problem”, Math. Notes, 96:6 (2014), 921–927 |
21. |
В. З. Гринес, Е. Я. Гуревич, О. В. Починка, “О включении диффеоморфизмов Морса–Смейла на сфере в топологический поток”, УМН, 71:6(432) (2016), 163–164 ; Russian Math. Surveys, 71:6 (2016), 1146–1148 |
22. |
В. З. Гринес, Е. Я. Гуревич, Е. В. Жужома, О. В. Починка, “Классификация систем Морса–Смейла и топологическая структура несущих многообразий”, УМН, 74:1(445) (2019), 41–116 ; англ. пер.: V. Z. Grines, E. Ya. Gurevich, E. V. Zhuzhoma, O. V. Pochinka, “Classification of Morse–Smale systems and topological structure of the underlying manifolds”, Russian Math. Surveys, 74:1 (2019), 37–110 |
23. |
В. З. Гринес, Х. Х. Калай, “О топологической классификации градиентноподобных диффеоморфизмов на неприводимых трехмерных многообразиях”, УМН, 49:2(296) (1994), 149–150 ; Russian Math. Surveys, 49:2 (1994), 157–158 |
24. |
В. З. Гринес, С. Х. Капкаева, О. В. Починка, “Трехцветный граф как полный топологический инвариант для градиентно-подобных диффеоморфизмов поверхностей”, Матем. сб., 205:10 (2014), 19–46 ; англ. пер.: V. Z. Grines, S. Kh. Kapkaeva, O. V. Pochinka, “A three-colour graph as a complete topological invariant for gradient-like diffeomorphisms of surfaces”, Sb. Math., 205:10 (2014), 1387–1412 |
25. |
V. Z. Grines, T. V. Medvedev, O. V. Pochinka, Dynamical systems on 2- and 3-manifolds, Dev. Math., 46, Springer, Cham, 2016, xxvi+295 pp. |
26. |
V. Grines, T. Medvedev, O. Pochinka, E. Zhuzhoma, “On heteroclinic separators of magnetic fields in electrically conducting fluids”, Phys. D, 294 (2015), 1–5 |
27. |
V. Grines, O. Pochinka, “On topological classification of Morse–Smale diffeomorphisms”, Dynamics, games and science. II (Univ. of Minho, Braga, 2008), Springer Proc. Math., 2, Springer, Heidelberg, 2011, 403–427 |
28. |
В. З. Гринес, О.В. Починка, “Каскады Морса–Смейла на 3-многообразиях”, УМН, 68:1(409) (2013), 129–188 ; Russian Math. Surveys, 68:1 (2013), 117–173 |
29. |
В. З. Гринес, Е. В. Жужома, В. С. Медведев, “Новые соотношения для систем Морса–Смейла с тривиально вложенными одномерными сепаратрисами”, Матем. сб., 194:7 (2003), 25–56 ; англ. пер.: V. Z. Grines, E. V. Zhuzhoma, V. S. Medvedev, “New relations for Morse–Smale systems with trivially embedded one-dimensional separatrices”, Sb. Math., 194:7 (2003), 979–1007 |
30. |
В. З. Гринес, Е. В. Жужома, В. С. Медведев, О. В. Починка, “Глобальные аттрактор и репеллер диффеоморфизмов Морса–Смейла”, Дифференциальные уравнения и топология. II, Сборник статей. К 100-летию со дня рождения академика Льва Семеновича Понтрягина, Труды МИАН, 271, МАИК “Наука/Интерпериодика”, М., 2010, 111–133 ; англ. пер.: V. Z. Grines, E. V. Zhuzhoma, V. S. Medvedev, O. V. Pochinka, “Global attractor and repeller of Morse–Smale diffeomorphisms”, Proc. Steklov Inst. Math., 271 (2010), 103–124 |
31. |
В. З. Гринес, Е. В. Жужома, О. В. Починка, “Динамические системы и топология магнитных полей в проводящей среде”, Дифференциальные и функционально-дифференциальные уравнения, СМФН, 63, № 3, РУДН, М., 2017, 455–474 ; англ. пер.: V. Z. Grines, E. V. Zhuzhoma, O. V. Pochinka, “Dynamical systems and topology of magnetic fields in conducting medium”, J. Math. Sci. (N. Y.), 253:5 (2021), 676–691 |
32. |
В. Гуревич, Г. Волмэн, Теория размерности, ИЛ, М., 1948, 232 с.; пер. с англ.: W. Hurewicz, H. Wallman, Dimension theory, Princeton Univ. Press, Princeton, NJ, 1948, vii+165 с. |
33. |
P. Kirk, C. Livingston, “Knot invariants in 3-manifolds and essential tori”, Pacific J. Math., 197:1 (2001), 73–96 |
34. |
V. E. Kruglov, D. S. Malyshev, O. V. Pochinka, D. D. Shubin, “On topological classification of gradient-like flows on an $n$-sphere in the sense of topological conjugacy”, Regul. Chaotic Dyn., 25:6 (2020), 716–728 |
35. |
Е. В. Круглов, Е. А. Таланова, “О реализации диффеоморфизмов Морса–Смейла с гетероклиническими кривыми на трехмерной сфере”, Дифференциальные уравнения и динамические системы, Сборник статей. К 80-летию со дня рождения академика Евгения Фроловича Мищенко, Труды МИАН, 236, Наука, МАИК “Наука/Интерпериодика”, М., 2002, 212–217 ; англ. пер.: E. V. Kruglov, E. A. Talanova, “On the realization of Morse–Smale diffeomorphisms with heteroclinic curves on a 3-sphere”, Proc. Steklov Inst. Math., 236 (2002), 201–205 |
36. |
Е. А. Леонтович, А. Г. Майеp, “О тpаектоpиях, опpеделяющих качественную стpуктуpу pазбиения сфеpы на тpаектоpии”, Докл. АН СССP, 14:5 (1937), 251–257 |
37. |
Е. А. Леонтович, А. Г. Майеp, “О схеме, опpеделяющей топологическую стpуктуpу pазбиения на тpаектоpии”, Докл. АН СССP, 103:4 (1955), 557–560 |
38. |
D. Malyshev, A. Morozov, O. Pochinka, “Combinatorial invariant for Morse–Smale diffeomorphisms on surfaces with orientable heteroclinic”, Chaos, 31:2 (2021), 023119, 17 pp. |
39. |
B. Mazur, “A note on some contractible 4-manifolds”, Ann. of Math. (2), 73:1 (1961), 221–228 |
40. |
Дж. Милнор, Теорема об $h$-кобордизме, Мир, М., 1969, 115 с. ; пер. с англ.: J. Milnor, Lectures on the $h$-cobordism theorem, Notes by L. Siebenmann and J. Sondow, Princeton Univ. Press, Princeton, NJ, 1965, v+116 с. |
41. |
Т. М. Митрякова, О. В. Починка, “О необходимых и достаточных условиях топологической сопряженности диффеоморфизмов поверхностей с конечным числом орбит гетероклинического касания”, Дифференциальные уравнения и динамические системы, Сборник статей, Труды МИАН, 270, МАИК “Наука/Интерпериодика”, М., 2010, 198–219 ; англ. пер.: T. M. Mitryakova, O. V. Pochinka, “Necessary and sufficient conditions for the topological conjugacy of surface diffeomorphisms with a finite number of orbits of heteroclinic tangency”, Proc. Steklov Inst. Math., 270 (2010), 194–215 |
42. |
J. Munkres, “Obstructions to the smoothing of piecewise-differentiable homeomorphisms”, Ann. of Math. (2), 72:3 (1960), 521–554 |
43. |
W. D. Neumann, “Notes on geometry and 3-manifolds”, Low dimensional topology (Eger, 1996/Budapest, 1998), Bolyai Soc. Math. Stud., 8, János Bolyai Math. Soc., Budapest, 1999, 191–267 |
44. |
А. А. Ошемков, В. В. Шарко, “О классификации потоков Морса–Смейла на двумерных многообразиях”, Матем. сб., 189:8 (1998), 93–140 ; англ. пер.: A. A. Oshemkov, V. V. Sharko, “Classification of Morse–Smale flows on two-dimensional manifolds”, Sb. Math., 189:8 (1998), 1205–1250 |
45. |
J. Palis, “On Morse–Smale dynamical systems”, Topology, 8:4 (1969), 385–404 |
46. |
Дж. Пали, С. Смейл, “Теоремы структурной устойчивости”, Математика, 13:2 (1969), 145–155 ; пер. с англ.: J. Palis, S. Smale, “Structural stability theorems”, Global analysis (Berkeley, CA, 1968), Proc. Sympos. Pure Math., 14, Amer. Math. Soc., Providence, RI, 1970, 223–231 |
47. |
M. M. Peixoto, “Structural stability on two-dimensional manifolds”, Topology, 1:2 (1962), 101–120 |
48. |
M. Peixoto, “Structural stability on two-dimensional manifolds: a further remark”, Topology, 2:1-2 (1963), 179–180 |
49. |
M. M. Peixoto, “On the classification of flows on 2-manifolds”, Dynamical systems (Univ. Bahia, Salvador, 1971), Academic Press, Inc., New York–London, 1973, 389–419 |
50. |
С. Ю. Пилюгин, “Фазовые диаграммы, определяющие системы Морса–Смейла без периодических траекторий на сферах”, Дифференц. уравнения, 14:2 (1978), 245–254 ; англ. пер.: S. Ju. Piljugin, “Phase diagrams determining Morse–Smale systems without periodic trajectories on spheres”, Differ. Equ., 14:2 (1978), 170–177 |
51. |
D. Pixton, “Wild unstable manifolds”, Topology, 16:2 (1977), 167–172 |
52. |
O. Pochinka, “Diffeomorphisms with mildly wild frame of separatrices”, Univ. Iagel. Acta Math., 47 (2009), 149–154 |
53. |
О. В. Починка, Д. Д. Шубин, “Неособые потоки Морса–Смейла с тремя периодическими орбитами на ориентируемых $3$-многообразиях”, Матем. заметки, 112:3 (2022), 426–443 ; англ. пер.: O. V. Pochinka, D. D. Shubin, “Nonsingular Morse–Smale flows with three periodic orbits on orientable $3$-manifolds”, Math. Notes, 112:3 (2022), 436–450 |
54. |
O. V. Pochinka, D. D. Shubin, “Non-singular Morse–Smale flows on $n$-manifolds with attractor-repeller dynamics”, Nonlinearity, 35:3 (2022), 1485–1499 |
55. |
О. В. Починка, Е. А. Таланова, “Минимизация числа гетероклинических кривых 3-диффеоморфизма с неподвижными точками, имеющими попарно различные индексы Морса”, ТМФ, 215:2 (2023), 311–317 ; англ. пер.: O. V. Pochinka, E. A. Talanova, “Minimizing the number of heteroclinic curves of a 3-diffeomorphism with fixed points with pairwise different Morse indices”, Theoret. and Math. Phys., 215:2 (2023), 729–734 |
56. |
O. Pochinka, E. Talanova, On the topology of 3-manifolds admitting Morse–Smale diffeomorphisms with four fixed points of pairwise different Morse indices, Cornell Univ., Working paper, 2023, 30 pp., arXiv: 2306.02814 |
57. |
О. В. Починка, Е. А. Таланова, Д. Д. Шубин, “Узел как полный инвариант 3-диффеоморфизмов Морса–Смейла с четырьмя неподвижными точками”, Матем. сб., 214:8 (2023), 94–107 ; англ. пер.: O. Pochinka, E. Talanova, D. Shubin, Knot as a complete invariant of a Morse–Smale 3-diffeomorphism with four fixed points, 2022, 13 с., arXiv: 2209.04815 |
58. |
E. R. Priest, Solar magneto-hydrodynamics, D. Reidel Publishing Co., Dordrecht, 1982, xix+469 pp. |
59. |
E. Priest, T. Forbes, Magnetic reconnection. MHD theory and applications, Cambridge Univ. Press, Cambridge, 2000, xii+600 pp. |
60. |
А. О. Пришляк, “Полный топологический инвариант потоков Морса–Смейла и разложений на ручки трехмерных многообразий”, Фундамент. и прикл. матем., 11:4 (2005), 185–196 ; англ. пер.: A. Prishlyak, “Complete topological invariants of Morse–Smale flows and handle decompositions of 3-manifolds”, J. Math. Sci. (N.Y.), 144:5 (2007), 4492–4499 |
61. |
D. Rolfsen, Knots and links, Math. Lecture Ser., 7, Corr. reprint of the 1976 original, Publish or Perish, Inc., Houston, TX, 1990, xiv+439 pp. |
62. |
В. И. Шмуклер, О. В. Починка, “Бифуркации, меняющие тип гетероклинических кривых 3-диффеоморфизма Морса–Смейла”, ТВИМ, 2021, № 1, 101–114 |
63. |
Д. Д. Шубин, “Топология несущих многообразий несингулярных потоков с тремя нескрученными орбитами”, Изв. вузов. ПНД, 29:6 (2021), 863–868 |
64. |
С. Смейл, “Неравенства Морса для динамических систем”, Математика, 11:4 (1967), 79–87 ; пер. с англ.: S. Smale, “Morse inequalities for a dynamical system”, Bull. Amer. Math. Soc., 66 (1960), 43–49 |
65. |
Я. Л. Уманский, “Необходимые и достаточные условия топологической эквивалентности трехмерных динамических систем Морса–Смейла с конечным числом особых траекторий”, Матем. сб., 181:2 (1990), 212–239 ; англ. пер.: Ya. L. Umanskiĭ, “Necessary and sufficient conditions for topological equivalence of three-dimensional Morse–Smale dynamical systems with a finite number of singular trajectories”, Math. USSR-Sb., 69:1 (1991), 227–253 |