|
|
|
References
|
|
|
1. |
E. Landau, Vorlesungen über Zahlentheorie, v. 2, Hierzel, Leipzig, 1927, viii+308 pp. |
2. |
E. C. Titchmarsh, The theory of the Riemann zeta-function, Clarendon Press, Oxford, 1951, vi+346 pp. |
3. |
A. Ivić, The Rieman zeta-function. The theory of the Riemann zeta-function with applications, Wiley-Intersci. Publ., John Wiley & Sons, Inc., New York, 1985, xvi+517 pp. |
4. |
A. A. Karatsuba, Basic analytic number theory, Springer-Verlag, Berlin, 1993, xiv+222 pp. |
5. |
E. Krätzel, Lattice points, Math. Appl. (East European Ser.), 33, Kluwer Acad. Publ., Dordrecht, 1988, 320 pp. |
6. |
Kai-Man Tsang, “Recent progress on the Dirichlet divisor problem and the mean square of Riemann zeta-function”, Sci. China Math., 53:9 (2010), 2561–2572 |
7. |
D. A. Popov, “Circle problem and the spectrum of the Laplace operator on closed 2-manifolds”, Russian Math. Surveys, 74:5 (2019), 909–925 |
8. |
A. G. Postnikov, Introduction to analytic number theory, Transl. Math. Monogr., 68, Amer. Math. Soc., Providence, RI, 1988, vi+320 pp. |
9. |
E. Bombieri, H. Iwaniec, “On the order of $\zeta(\frac{1}{2}+it)$”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 13:3 (1986), 449–472 |
10. |
S. W. Graham, G. Kolesnik, Van der Corput's method of exponential sums, London Math. Soc. Lecture Note Ser., 126, Cambridge Univ. Press, Cambridge, 1991, vi+120 pp. |
11. |
M. N. Huxley, Area, lattice points, and exponential sums, London Math. Soc. Monogr. (N. S.), 13, The Clarendon Press, Oxford Univ. Press, New York, 1996, xii+494 pp. |
12. |
G. Kolesnik, “On the method of exponential pairs”, Acta Arith., 45:2 (1985), 115–143 |
13. |
H. Iwaniec, C. J. Mozzochi, “On the divisor and circle problems”, J. Number Theory, 29:1 (1988), 60–93 |
14. |
Xiaochun Li, Xuerui Yang, An improvement on Gauss's circle problem and Dirichlet's divisor problem, 2023, 32 pp., arXiv: 2308.14859v1 |
15. |
G. Voronoï, “Sur le développement, à l'aide des fonctions cylindriques, des sommes doubles $\sum f(pm^2+2qmn+rn^2)$, où $pm^2+2qmn+rn^2$ est une forme positive à coefficients entiers”, Verhandlungen des dritten internationalen Mathematiker-Kongresses (Heidenberg, 1904), Teubner, Leipzig, 1905, 241–245 |
16. |
G. H. Hardy, “On the expression of number as the sum of two squares”, Quat. J. Pure Appl. Math., 46 (1915), 263–283 |
17. |
K. F. Ireland, M. I. Rosen, A classical introduction to modern number theory, Grad. Texts in Math., 84, Springer-Verlag, New York–Berlin, 1982, xiii+341 pp. |
18. |
E. Hecke, Vorlesungen über die Theorie der algebraischen Zahlen, Akad. Verlagsges., Leipzig, 1923, viii+265 pp. |
19. |
S. Bochner, Lectures on Fourier integrals, With an author's supplement on monotonic functions, Stieltjes integrals, and harmonic analysis, Ann. of Math. Stud., 42, Princeton Univ. Press, Princeton, NJ, 1959, viii+333 pp. |
20. |
G. N. Watson, A treatise on the theory of Bessel functions, 2nd ed., Cambridge Univ. Press, Cambridge, England; The Macmillan Co., New York, 1944, vi+804 pp. |
21. |
E. C. Titchmarsh, Introduction to the theory of Fourier integrals, Oxford, Clarendon Press, 1937, x+390 pp. |
22. |
G. H. Hardy, M. Reisz, The general theory of Dirichlet's series, Cambridge Tracts in Math. and Math. Phys., 18, Cambridge Univ. Press, Cambridge, 1964, vii+78 pp. |
23. |
D. A. Popov, “Spectrum of the Laplace operator on closed surfaces”, Russian Math. Surveys, 77:1 (2022), 81–97 |
24. |
G. H. Hardy, E. Landau, “The lattice points of a circle”, Proc. Roy. Soc. London Ser. A, 105:731 (1924), 244–258 |
25. |
K. Prachar, Primzahlverteilung, Springer-Verlag, Berlin–Göttingen–Heidelberg, 1957, x+415 pp. |
26. |
K. Chandrasekharan, Arithmetical functions, Grundlehren Math. Wiss., 167, Springer-Verlag, New York–Berlin, 1970, xi+231 pp. |
27. |
M. Abramowitz, I. A. Stegun (eds.), Handbook of mathematical functions with formulas, graphs and mathematical tables, National Bureau of Standards Applied Mathematics Series, 55, Superintendent of Documents, U.S. Government Printing Office, Washington, DC, 1964, xiv+1046 pp. |
28. |
A. Erdélyi, W. Magnus, F. Oberhettinger, F. G. Tricomi, Higher transcendental functions, Based, in part, on notes left by H. Bateman, v. 2, McGraw-Hill Book Company, Inc., New York–Toronto–London, 1953, xvii+396 pp. |
29. |
I. S. Gradshteyn, I. M. Ryzhik, Table of integrals, series, and products, 7th ed., Elsevier/Academic Press, Amsterdam, 2007, xlviii+1171 pp. |
30. |
W. G. Nowak, “Lattice points of a circle: an improved mean-square asymptotics”, Acta Arith., 113:3 (2004), 259–272 |
31. |
Yuk-Kam Lau, Kai-Man Tsang, “On the mean square formula of the error term in the Dirichlet divisor problem”, Math. Proc. Cambridge Philos. Soc., 146:2 (2009), 277–287 |
32. |
H. L. Montgomery, R. C. Vaughan, “Hilbert's inequality”, J. London Math. Soc. (2), 8 (1974), 73–82 |
33. |
Kai-Man Tsang, “Higher-power moments of $\Delta(x)$, $E(t)$ and $P(x)$”, Proc. London Math. Soc. (3), 65:1 (1992), 65–84 |
34. |
Wenguang Zhai, “On higher-power moments of $\Delta(x)$”, Acta Arith., 112:4 (2004), 367–395 ; II, 114:1 (2004), 35–54 ; III, 118:3 (2005), 263–281 |
35. |
A. Ivić, “Large values of the error term in the divisor problem”, Invent. Math., 71:3 (1983), 513–520 |
36. |
D. R. Heath-Brown, “The distribution and moments of the error term in the Dirichlet divisor problem”, Acta Arith., 60:4 (1992), 389–415 |
37. |
G. H. Hardy, “On Dirichlet's divisor problem”, Proc. London Math. Soc. (2), 15 (1916), 1–25 |
38. |
G. H. Hardy, “The average order of the arithmetical functions $P(x)$ and $\Delta(x)$”, Proc. London Math. Soc. (2), 15 (1916), 192–213 |
39. |
K. S. Gangadharan, “Two classical lattice point problems”, Proc. Cambridge Philos. Soc., 57:4 (1961), 699–721 |
40. |
S. Soundararajan, “Omega results for the divisor and circle problems”, Int. Math. Res. Not., 2003:36 (2003), 1987–1998 |
41. |
D. R. Heath-Brown, K. Tsang, “Sign changes of $E(t)$, $\Delta(x)$, and $P(x)$”, J. Number Theory, 49:1 (1994), 73–83 |
42. |
M. Kac, Statistical independence in probability, analysis and number theory, Carus Math. Monogr., 12, John Wiley and Sons, Inc., New York, 1959, xiv+93 pp. |
43. |
Yuk-Kam Lau, Kai-Man Tsang, “Moments over short intervals”, Arch. Math. (Basel), 84:3 (2005), 249–257 |
44. |
P. M. Bleher, Zheming Cheng, F. J. Dyson, J. L. Lebowitz, “Distribution of the error term for the number of lattice points inside a shifted circle”, Comm. Math. Phys., 154:3 (1993), 433–469 |
45. |
Yuk-Kam Lau, “On the tails of the limiting distribution function of the error term in the Dirichlet divisor problem”, Acta Arith., 100:4 (2001), 329–337 |
46. |
D. A. Popov, “Bounds and behaviour of the quantities $P(x)$ and $\Delta(x)$ on short intervals”, Izv. Math., 80:6 (2016), 1213–1230 |
47. |
A. Ivić, P. Sargos, “On the higher moments of the error term in the divisor problem”, Illinois J. Math., 51:2 (2007), 353–377 |
48. |
L. Hörmander, The analysis of linear partial differential operators, v. I, Grundlehren Math. Wiss., 256, Distribution theory and Fourier analysis, Springer-Verlag, Berlin, 1983, ix+391 pp. |
49. |
O. Robert, P. Sargos, “Three-dimensional exponential sums with monomials”, J. Reine Angew. Math., 2006:591 (2006), 1–20 |
50. |
M. Jutila, “On the divisor problem for short intervals”, Ann. Univ. Turku. Ser. A I, 1984, no. 186, 23–30 |
51. |
A. Ivić, Wenguang Zhai, “On the Dirichlet divisor problem in short intervals”, Ramanujan J., 33:3 (2014), 447–465 |
52. |
M. A. Korolev, D. A. Popov, “On Jutila's integral in the circle problem”, Izv. Math., 86:3 (2022), 413–455 |
53. |
A. Ivić, “On the divisor function and the Riemann zeta-function in short intervals”, Ramanujan J., 19:2 (2009), 207–224 |
54. |
D. A. Popov, D. V. Sushko, “Numerical investigation of the properties of remainder in Gauss's circle problem”, Comput. Math. Math. Phys., 62:12 (2022), 2008–2022 |