RUS  ENG
Полная версия
ЖУРНАЛЫ // Сибирские электронные математические известия

Сиб. электрон. матем. изв., 2021, том 18, выпуск 1, страницы 121–135 (Mi semr1352)

Effective Wadge hierarchy in computable quasi-Polish spaces
V. L. Selivanov

Список литературы

1. A. Callard, M. Hoyrup, “Descriptive complexity on non-Polish spaces”, 37th International Symposium on Theoretical Aspects of Computer Science 2020, LIPIcs, 154, 2020, 8:1–8:16  mathscinet
2. M. de Brecht, “Quasi-Polish spaces”, Ann. Pure Appl. Logic, 164:3 (2013), 356–381  crossref  mathscinet  zmath
3. M. de Brecht, A. Pauly, M. Schröder, “Overt choice”, Computability, 9:3-4 (2020), 169–191  crossref  mathscinet  zmath
4. P. Hertling, “An effective Riemann Mapping Theorem”, Theor. Comput. Sci., 219:1-2 (1999), 225–265  crossref  mathscinet  zmath
5. M. Hoyrup, C. Rojas, V. Selivanov, D. Stull, “Computability on quasi-Polish spaces”, Proc. of DCFS-2019, LNCS, 11612, Springer, Berlin, 2019, 171–183  mathscinet  zmath
6. A.S. Kechris, Classical descriptive set theory, Graduate Texts in Mathematics, 156, Springer, Berlin, 1995  crossref  mathscinet  zmath
7. M.V. Korovina, O.V. Kudinov, “On higher effective descriptive set theory”, CiE-2017, LNCS, 10307, Springer, Berlin, 2017, 282–291  mathscinet  zmath
8. T. Kihara, A. Montalbán, “On the structure of the Wadge degrees of bqo-valued Borel functions”, Trans. Am. Math. Soc., 371:11 (2019), 7885–7923  crossref  mathscinet  zmath
9. A. Louveau, “Recursivity and compactness”, Higher Set Theory, Proc. (Oberwolfach 1977), Lect. Notes Math., 669, 1978, 303–337  crossref  mathscinet  zmath
10. Y.N. Moschovakis, Descriptive set theory, Mathematical Surveys and Monographs, 155, AMS, Providence, 2009  crossref  mathscinet  zmath
11. A. Pauly, Computability on the space of countable ordinals, 2017, arXiv: 1501.00386v3
12. H. Rogers, jun., Theory of recursive functions and effective computability, McGraw-Hill, New York, 1967  mathscinet  zmath
13. V.L. Selivanov, “Hierarchies of hyperarithmetical sets and functions”, Algebra Logika, 22:6 (1983), 666–692  mathnet  crossref  mathscinet  zmath
14. V.L. Selivanov, “Fine hierarchy of regular $\omega$-languages”, Theor. Comput. Sci., 191:1-2 (1998), 37–59  crossref  mathscinet  zmath
15. V.L. Selivanov, “Wadge degrees of $\omega$-languages of deterministic Turing machines”, Theor. Inform. Appl., 37:1 (2003), 67–83  crossref  mathscinet  zmath
16. V.L. Selivanov, “Towards a descriptive set theory for domain-like structures”, Theor. Comput. Sci., 365:3 (2006), 258–282  crossref  mathscinet  zmath  elib
17. V.L. Selivanov, “Fine hierarchies and $m$-reducibilities in theoretical computer science”, Theor. Comput. Sci., 405:1-2 (2008), 116–163  crossref  mathscinet  zmath  elib
18. V.L. Selivanov, “Fine hierarchies via Priestley duality”, Ann. Pure Appl. Logic, 163:8 (2012), 1075–1107  crossref  mathscinet  zmath  elib
19. V.L. Selivanov, “Total representations”, Log. Methods Comput. Sci., 9:2 (2013), 5  crossref  mathscinet  zmath  elib
20. V.L. Selivanov, “Towards the effective descriptive set theory”, Proc. CiE 2015, LNCS, 9136, Springer, Berlin, 2015, 324–333  mathscinet  zmath  elib
21. V.L. Selivanov, “Towards a descriptive theory of $cb_0$-spaces”, Math. Struct. Comput. Sci., 27:8 (2017), 1553–1580  crossref  mathscinet  zmath
22. V. Selivanov, “A $Q$-Wadge hierarchy in quasi-Polish spaces”, The Journal of Symbolic Logic, 2020, 1–27, arXiv: 1911.02758v1  crossref
23. J. Saint Raymond, “Preservation of the Borel class under countable-compact-covering mappings”, Topology Appl., 154:8 (2007), 1714–1725  crossref  mathscinet  zmath
24. K. Wagner, “On $\omega$-regular sets”, Inf. Control, 43 (1979), 123–177  crossref  mathscinet  zmath  adsnasa
25. K. Weihrauch, Computable Analysis, Springer, Berlin, 2000  mathscinet  zmath
26. M. Ziegler, “Effectively open real functions”, J. Complexity, 22:6 (2006), 827–849  crossref  mathscinet  zmath


© МИАН, 2025