|
|
|
Список литературы
|
|
|
1. |
A. Callard, M. Hoyrup, “Descriptive complexity on non-Polish spaces”, 37th International Symposium on Theoretical Aspects of Computer Science 2020, LIPIcs, 154, 2020, 8:1–8:16 |
2. |
M. de Brecht, “Quasi-Polish spaces”, Ann. Pure Appl. Logic, 164:3 (2013), 356–381 |
3. |
M. de Brecht, A. Pauly, M. Schröder, “Overt choice”, Computability, 9:3-4 (2020), 169–191 |
4. |
P. Hertling, “An effective Riemann Mapping Theorem”, Theor. Comput. Sci., 219:1-2 (1999), 225–265 |
5. |
M. Hoyrup, C. Rojas, V. Selivanov, D. Stull, “Computability on quasi-Polish spaces”, Proc. of DCFS-2019, LNCS, 11612, Springer, Berlin, 2019, 171–183 |
6. |
A.S. Kechris, Classical descriptive set theory, Graduate Texts in Mathematics, 156, Springer, Berlin, 1995 |
7. |
M.V. Korovina, O.V. Kudinov, “On higher effective descriptive set theory”, CiE-2017, LNCS, 10307, Springer, Berlin, 2017, 282–291 |
8. |
T. Kihara, A. Montalbán, “On the structure of the Wadge degrees of bqo-valued Borel functions”, Trans. Am. Math. Soc., 371:11 (2019), 7885–7923 |
9. |
A. Louveau, “Recursivity and compactness”, Higher Set Theory, Proc. (Oberwolfach 1977), Lect. Notes Math., 669, 1978, 303–337 |
10. |
Y.N. Moschovakis, Descriptive set theory, Mathematical Surveys and Monographs, 155, AMS, Providence, 2009 |
11. |
A. Pauly, Computability on the space of countable ordinals, 2017, arXiv: 1501.00386v3 |
12. |
H. Rogers, jun., Theory of recursive functions and effective computability, McGraw-Hill, New York, 1967 |
13. |
V.L. Selivanov, “Hierarchies of hyperarithmetical sets and functions”, Algebra Logika, 22:6 (1983), 666–692 |
14. |
V.L. Selivanov, “Fine hierarchy of regular $\omega$-languages”, Theor. Comput. Sci., 191:1-2 (1998), 37–59 |
15. |
V.L. Selivanov, “Wadge degrees of $\omega$-languages of deterministic Turing machines”, Theor. Inform. Appl., 37:1 (2003), 67–83 |
16. |
V.L. Selivanov, “Towards a descriptive set theory for domain-like structures”, Theor. Comput. Sci., 365:3 (2006), 258–282 |
17. |
V.L. Selivanov, “Fine hierarchies and $m$-reducibilities in theoretical computer science”, Theor. Comput. Sci., 405:1-2 (2008), 116–163 |
18. |
V.L. Selivanov, “Fine hierarchies via Priestley duality”, Ann. Pure Appl. Logic, 163:8 (2012), 1075–1107 |
19. |
V.L. Selivanov, “Total representations”, Log. Methods Comput. Sci., 9:2 (2013), 5 |
20. |
V.L. Selivanov, “Towards the effective descriptive set theory”, Proc. CiE 2015, LNCS, 9136, Springer, Berlin, 2015, 324–333 |
21. |
V.L. Selivanov, “Towards a descriptive theory of $cb_0$-spaces”, Math. Struct. Comput. Sci., 27:8 (2017), 1553–1580 |
22. |
V. Selivanov, “A $Q$-Wadge hierarchy in quasi-Polish spaces”, The Journal of Symbolic Logic, 2020, 1–27, arXiv: 1911.02758v1 |
23. |
J. Saint Raymond, “Preservation of the Borel class under countable-compact-covering mappings”, Topology Appl., 154:8 (2007), 1714–1725 |
24. |
K. Wagner, “On $\omega$-regular sets”, Inf. Control, 43 (1979), 123–177 |
25. |
K. Weihrauch, Computable Analysis, Springer, Berlin, 2000 |
26. |
M. Ziegler, “Effectively open real functions”, J. Complexity, 22:6 (2006), 827–849 |