|
|
|
Список литературы
|
|
|
1. |
Arutyunov A. V., Greshnov A. V., “$(q_1,q_2)$-quasimetric spaces. Covering mappings and coincidence points”, Izvestiya RAN: Ser. Mat., 82:2 (2018), 3–32 |
2. |
Arutyunov A. V., Greshnov A. V., “Theory of $(q_1, q_2)$-quasimetric spaces and coincidence points”, Dokl. Math., 94:1 (2016), 434–437 |
3. |
Arutyunov A. V., Greshnov A. V., “Coincidence points of multi-valued mappings in $(q_1,q_2)$-quasimetric spaces”, Dokl. Math., 96:2 (2017), 438–441 |
4. |
Arutyunov A. V., Greshnov A. V., Lokoutsievskii L. V., Storozhuk K. V., “Topological and geometrical properties of spaces with symmetric and nonsymmetric f-quasimetrics”, Topology Appl., 221 (2017), 178–194 |
5. |
Sengupta R., “About fixed points of contraction mappings acting in $(q_1,q_2)$-quasi-metric spaces”, Eurasian Math. Jour., 8:3 (2017), 70–76 |
6. |
Greshnov A. V., “$(q_1,q_2)$-quasimetrics bi-Lipschitz equivalent to 1-quasimetrics”, Siberian Adv. Math., 27:4 (2017), 253–262 |
7. |
Greshnov A. V., “Regularization of distance functions and separation axioms on $(q_1, q_2)$-quasimetric spaces”, Siberian Electronic Mathematical Reports, 14 (2017), 765–773 |
8. |
Greshnov A. V., “Some problems of regularity of $f$-quasimetrics”, Siberian Electronic Mathematical Reports, 15 (2018), 355–361 |
9. |
Greshnov A. V., Zhukov R. I., “Completeness theorem in $(q_1, q_2)$-quasimetric spaces”, Siberian Electronic Mathematical Reports, 16 (2018), 2090–2097 |
10. |
Wilson W. A., “On quasi-metric spaces”, American J. of Math., 53:3 (1931), 675–684 |
11. |
Vodopyanov S. K., “Geometry of Carnot-Carathéodory spaces and differentiability of mappings”, Contemporary Mathematics, 424, 2007, 247–301 |
12. |
Basalaev S. G., Vodopyanov S. K., “Approximate differentiability of mappings of Carnot-Carathéodory spaces”, Eurasian Math. J., 4:2 (2013), 10–48 |
13. |
Greshnov A. V., “On the generalized triangle inequality for quasimetrics induced by noncommuting vector fields”, Siberian Adv. Math., 22:2 (2012), 95–114 |
14. |
Greshnov A. V., “Proof of Gromov's theorem on homogeneous nilpotent approximation for vector fields of class $C^1$”, Siberian Adv. Math., 23:3 (2013), 180–191 |
15. |
Nagel A., Stein E. M., Wainger S., “Balls and metrics defined by vector fields. I. Basic properties”, Acta Math., 155:1–2 (1985), 103–47 |
16. |
Greshnov A. V., “Local approximation of uniformly regular Carnot -Carathéodory quasispaces by their tangent”, Siberian Math. J., 48:2 (2007), 229–248 |
17. |
Greshnov A. V., “Metrics and tangent cones of uniformly regular Carnot-Carathéodory spaces”, Siberian Math. J., 47:2 (2006), 209–238 |
18. |
Greshnov A. V., Tryamkin M. V., “Exact values of constants in the generalized triangle inequality for some $(1,q_2)$-quasimetrics on canonical Carnot groups”, Math. Notes, 98:4 (2015), 694–698 |
19. |
Ovsyannikov L. V., Group Analysis of Differential Equations, Nauka, M., 1978 ; Academic Press, New York, 1982 |
20. |
Postnikov M. M., Lie Groups and Lie Algebras. Lectures in Geometry. Semester V, Nauka, M., 1982 ; Mir, M., 1986 |
21. |
Rothchild L. P., Stein E. S., “Hypoelliptic differential operators and nilpotent groups”, Acta Math., 137 (1976), 247–320 |
22. |
Bonfiglioli A., Lanconelli E., Uguzzoni F., Stratified Lie groups and potential theory for their sub-Laplacian, Springer–Verlag, Berlin–Heidelberg, 2007 |