RUS  ENG
Полная версия
ЖУРНАЛЫ // Сибирские электронные математические известия

Сиб. электрон. матем. изв., 2004, том 1, страницы 47–63 (Mi semr5)

Convergence and convergence rate to fractional Brownian motion for weighted random sums
T. Konstantopoulos, A. Sakhanenko

Список литературы

1. Beran J., Sherman R., Taqqu M.S. and Willinger W., “Long-range dependence in variable bit rate video traffic”, IEEE Trans. Com., 43 (1995), 1566–1579  crossref  isi
2. Berman S.M., “An asymptotic formula for the distribution of the maximum of a gaussian process with stationary increments”, J. Appl. Prob., 22 (1985), 454–460  crossref  mathscinet  zmath  isi
3. Billingsley P., Convergence of Probability Measures, John Wiley & Sons, New York, 1968  mathscinet  zmath
4. Box G.P., Jenkins G.M., and Reinsel G.C., Time Series Analysis, Prentice-Hall, 1994  mathscinet  zmath
5. Csörgő M. and Horváth L., Weighted Approximations in Probability and Statistics, Wiley, Chichester, 1993  mathscinet  zmath
6. Davydov Y.A., “The invariance principle for stationary processes”, Theory Prob. Appl., 15 (1970), 487–498  mathnet  crossref  mathscinet
7. Konstantopoulos T. and Lin S.J., “Fractional Brownian approximations of stochastic networks”, Stochastic Networks: Stability and Rare Events, Lecture Notes in Statistics, 117, eds. P. Glasserman, K. Sigman and D. Yao, Springer-Verlag, New York, 1996, 257–274  mathscinet
8. Leland W.E., Taqqu M.S., Willinger W., and Wilson D.V., “On the self-similar nature of Ethernet traffic”, IEEE/ACM Trans. Netw., 1993
9. Mandelbrot B. and Van Ness J., “Fractional Brownian motions, fractional noise and applications”, SIAM Review, 10 (1968), 422–437  crossref  mathscinet  zmath  adsnasa


© МИАН, 2025