|
|
|
Список литературы
|
|
|
1. |
A. Abdollahi, E. Vatandoost, Which Cayley graphs are integral?, The electronic journal of combinatorics, 16 (2009), 6–7 |
2. |
S. B. Akers, B. Krishnamurthy, “A group-theoretic model for symmetric interconnection networks”, IEEE Trans. Comput., 38:4 (1989), 555–566 |
3. |
A. E. Brouwer, W. H. Haemers, Spectra of graphs, Springer, New York, 2012 |
4. |
G. Chapuy, V. Feray, A note on a Cayley graph of $Sym_{n}$, 2012, 3 pp., arXiv: 1202.4976v2 |
5. |
A. Jucys, “Symmetric polynomials and the center of the symmetric group ring”, Reports Math. Phys., 5 (1974), 107–112 |
6. |
J. S. Jwo, S. Lakshmivarahan, S. K. Dhall, “Embedding of cycles and grids in star graphs”, J. Circuits. Syst. Comput., 1:1 (1991), 43–74 |
7. |
V. L. Kompel'makher, V. A. Liskovets, “Successive generation of permutations by means of a transposition basis”, Kibernetika, 3 (1975), 17–21 (in Russian) |
8. |
R. Krakovski, B. Mohar, “Spectrum of Cayley Graphs on the Symmetric Group generated by transposition”, Linear Algebra and its applications, 437 (2012), 1033–1039 |
9. |
G. Murphy, “A new construction of Young's seminormal representation of the symmetric group”, J. Algebra, 69 (1981), 287–291 |
10. |
A. Okounkov, A. Vershik, “A new approach to representation theory of symmetric groups”, Selecta Math., 2:4 (1996), 1–15 |
11. |
B. Sagan, The Symmetric Group: Representations, Combinatorial Algorithms, and Symmetric Functions, second edition, Springer, New York, 2001 |
12. |
P. J. Slater, “Generating all permutations by graphical transpositions”, Ars Combinatoria, 5 (1978), 219–225 |