RUS  ENG
Полная версия
ЖУРНАЛЫ // Сибирские электронные математические известия

Сиб. электрон. матем. изв., 2015, том 12, страницы 92–100 (Mi semr571)

Note on exact values of multiplicities of eigenvalues of the Star graph
Ekaterina N. Khomyakova, Elena V. Konstantinova

Список литературы

1. A. Abdollahi, E. Vatandoost, Which Cayley graphs are integral?, The electronic journal of combinatorics, 16 (2009), 6–7  mathscinet
2. S. B. Akers, B. Krishnamurthy, “A group-theoretic model for symmetric interconnection networks”, IEEE Trans. Comput., 38:4 (1989), 555–566  crossref  mathscinet  zmath  isi
3. A. E. Brouwer, W. H. Haemers, Spectra of graphs, Springer, New York, 2012  mathscinet  zmath
4. G. Chapuy, V. Feray, A note on a Cayley graph of $Sym_{n}$, 2012, 3 pp., arXiv: 1202.4976v2
5. A. Jucys, “Symmetric polynomials and the center of the symmetric group ring”, Reports Math. Phys., 5 (1974), 107–112  crossref  mathscinet  zmath
6. J. S. Jwo, S. Lakshmivarahan, S. K. Dhall, “Embedding of cycles and grids in star graphs”, J. Circuits. Syst. Comput., 1:1 (1991), 43–74  crossref
7. V. L. Kompel'makher, V. A. Liskovets, “Successive generation of permutations by means of a transposition basis”, Kibernetika, 3 (1975), 17–21 (in Russian)  mathscinet
8. R. Krakovski, B. Mohar, “Spectrum of Cayley Graphs on the Symmetric Group generated by transposition”, Linear Algebra and its applications, 437 (2012), 1033–1039  crossref  mathscinet  zmath  isi
9. G. Murphy, “A new construction of Young's seminormal representation of the symmetric group”, J. Algebra, 69 (1981), 287–291  crossref  mathscinet  isi
10. A. Okounkov, A. Vershik, “A new approach to representation theory of symmetric groups”, Selecta Math., 2:4 (1996), 1–15  crossref  mathscinet
11. B. Sagan, The Symmetric Group: Representations, Combinatorial Algorithms, and Symmetric Functions, second edition, Springer, New York, 2001  mathscinet  zmath
12. P. J. Slater, “Generating all permutations by graphical transpositions”, Ars Combinatoria, 5 (1978), 219–225  mathscinet  zmath


© МИАН, 2025