RUS  ENG
Ïîëíàÿ âåðñèÿ
ÆÓÐÍÀËÛ // Symmetry, Integrability and Geometry: Methods and Applications

SIGMA, 2016, òîì 12, 017, 23 ñòð. (Mi sigma1099)

Rigid HYM Connections on Tautological Bundles over ALE Crepant Resolutions in Dimension Three
Anda Degeratu, Thomas Walpuski

Ñïèñîê ëèòåðàòóðû

1. Atiyah M. F., Patodi V. K., Singer I. M., “Spectral asymmetry and Riemannian geometry, I”, Math. Proc. Cambridge Philos. Soc., 77 (1975), 43–69  crossref  mathscinet  zmath
2. Bando S., “Einstein–Hermitian metrics on noncompact Kähler manifolds”, Einstein Metrics and Yang–Mills Connections (Sanda, 1990), Lecture Notes in Pure and Appl. Math., 145, Dekker, New York, 1993, 27–33  mathscinet  zmath
3. Bando S., Kasue A., Nakajima H., “On a construction of coordinates at infinity on manifolds with fast curvature decay and maximal volume growth”, Invent. Math., 97 (1989), 313–349  crossref  mathscinet  zmath  isi
4. Bartnik R., “The mass of an asymptotically flat manifold”, Comm. Pure Appl. Math., 39 (1986), 661–693  crossref  mathscinet  zmath  isi
5. Baum P., Fulton W., MacPherson R., “Riemann–Roch and topological $K$ theory for singular varieties”, Acta Math., 143 (1979), 155–192  crossref  mathscinet  zmath
6. Blichfeldt H. F., Finite collineation groups: with an introduction to the theory of groups of operators and substitution groups, University of Chicago Press, Chicago, 1917
7. Bridgeland T., King A., Reid M., “The McKay correspondence as an equivalence of derived categories”, J. Amer. Math. Soc., 14 (2001), 535–554  crossref  mathscinet  zmath  isi
8. Bühler T., An introduction to the derived category, Notes to a series of lectures given at the Mirror Symmetry Learning Seminar, ETH Zürich, 2007 http://xwww.uni-math.gwdg.de/theo/intro-derived.pdf
9. Calderbank D. M. J., Gauduchon P., Herzlich M., “Refined Kato inequalities and conformal weights in Riemannian geometry”, J. Funct. Anal., 173 (2000), 214–255, arXiv: math.DG/9909116  crossref  mathscinet  zmath  isi
10. Craw A., Ishii A., “Flops of $G$-Hilb and equivalences of derived categories by variation of GIT quotient”, Duke Math. J., 124 (2004), 259–307, arXiv: math/0211360  crossref  mathscinet  zmath  isi
11. Degeratu A., Eta-invariants and Molien series for unimodular groups, Ph.D. Thesis, Massachusetts Institute of Technology, 2001  mathscinet
12. Degeratu A., Mazzeo R., Fredholm theory for elliptic operators on quasi-asymptotically conical spaces, arXiv: 1406.3465
13. Gocho T., Nakajima H., “Einstein–Hermitian connections on hyper-Kähler quotients”, J. Math. Soc. Japan, 44 (1992), 43–51  crossref  mathscinet  zmath  isi
14. Gonzalez-Sprinberg G., Verdier J.-L., “Construction géométrique de la correspondance de McKay”, Ann. Sci. École Norm. Sup. (4), 16 (1983), 409–449  mathscinet  zmath
15. Hartshorne R., Algebraic geometry, Graduate Texts in Mathematics, 52, Springer-Verlag, New York–Heidelberg, 1977  crossref  mathscinet  zmath
16. Hitchin N., “Harmonic spinors”, Adv. Math., 14 (1974), 1–55  crossref  mathscinet  zmath
17. Huybrechts D., Fourier–Mukai transforms in algebraic geometry, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, Oxford, 2006  crossref  mathscinet
18. Ito Y., Nakajima H., “McKay correspondence and Hilbert schemes in dimension three”, Topology, 39 (2000), 1155–1191, arXiv: math.AG/9803120  crossref  mathscinet  zmath  isi
19. Joyce D. D., Compact manifolds with special holonomy, Oxford Mathematical Monographs, Oxford University Press, Oxford, 2000  mathscinet  zmath
20. King A. D., “Moduli of representations of finite-dimensional algebras”, Quart. J. Math. Oxford Ser. (2), 45 (1994), 515–530  crossref  mathscinet  zmath  isi
21. Kronheimer P. B., “The construction of ALE spaces as hyper-Kähler quotients”, J. Differential Geom., 29 (1989), 665–683  mathscinet  zmath  isi
22. Kronheimer P. B., Nakajima H., “Yang–Mills instantons on ALE gravitational instantons”, Math. Ann., 288 (1990), 263–307  crossref  mathscinet  zmath  isi
23. McKay J., “Graphs, singularities, and finite groups”, Santa Cruz Conference on Finite Groups (Univ. California, Santa Cruz, Calif., 1979), Proc. Sympos. Pure Math., 37, Amer. Math. Soc., Providence, R.I., 1980, 183–186  crossref  mathscinet
24. Neeman A., Algebraic and analytic geometry, London Mathematical Society Lecture Note Series, 345, Cambridge University Press, Cambridge, 2007  crossref  mathscinet  zmath
25. Sardo Infirri A. V., Partial resolutions of orbifold singularities via moduli spaces of HYM-type bundles, arXiv: alg-geom/9610004
26. Thomas R. P., “Derived categories for the working mathematician”, Winter School on Mirror Symmetry, Vector Bundles and Lagrangian Submanifolds (Cambridge, MA, 1999), AMS/IP Stud. Adv. Math., 23, Amer. Math. Soc., Providence, RI, 2001, 349–361, arXiv: math.AG/0001045  mathscinet  zmath
27. Toen B., $K$-théorie et cohomologie des champs algébriques, Ph.D. Thesis, Université Paul Sabatier, Toulouse, 1999
28. Walpuski T., Gauge theory on ${\rm G}_2$-manifolds, Ph.D. Thesis, Imperial College London, 2013
29. Yau S. S.-T., Yu Y., Gorenstein quotient singularities in dimension three, Mem. Amer. Math. Soc., 105, 1993, viii+88 pp.  crossref  mathscinet


© ÌÈÀÍ, 2025