|
|
|
Ñïèñîê ëèòåðàòóðû
|
|
|
1. |
Atiyah M. F., Patodi V. K., Singer I. M., “Spectral asymmetry and Riemannian geometry, I”, Math. Proc. Cambridge Philos. Soc., 77 (1975), 43–69 |
2. |
Bando S., “Einstein–Hermitian metrics on noncompact Kähler manifolds”, Einstein Metrics and Yang–Mills Connections (Sanda, 1990), Lecture Notes in Pure and Appl. Math., 145, Dekker, New York, 1993, 27–33 |
3. |
Bando S., Kasue A., Nakajima H., “On a construction of coordinates at infinity on manifolds with fast curvature decay and maximal volume growth”, Invent. Math., 97 (1989), 313–349 |
4. |
Bartnik R., “The mass of an asymptotically flat manifold”, Comm. Pure Appl. Math., 39 (1986), 661–693 |
5. |
Baum P., Fulton W., MacPherson R., “Riemann–Roch and topological $K$ theory for singular varieties”, Acta Math., 143 (1979), 155–192 |
6. |
Blichfeldt H. F., Finite collineation groups: with an introduction to the theory of groups of operators and substitution groups, University of Chicago Press, Chicago, 1917 |
7. |
Bridgeland T., King A., Reid M., “The McKay correspondence as an equivalence of derived categories”, J. Amer. Math. Soc., 14 (2001), 535–554 |
8. |
Bühler T., An introduction to the derived category, Notes to a series of lectures given at the Mirror Symmetry Learning Seminar, ETH Zürich, 2007 http://xwww.uni-math.gwdg.de/theo/intro-derived.pdf |
9. |
Calderbank D. M. J., Gauduchon P., Herzlich M., “Refined Kato inequalities and conformal weights in Riemannian geometry”, J. Funct. Anal., 173 (2000), 214–255, arXiv: math.DG/9909116 |
10. |
Craw A., Ishii A., “Flops of $G$-Hilb and equivalences of derived categories by variation of GIT quotient”, Duke Math. J., 124 (2004), 259–307, arXiv: math/0211360 |
11. |
Degeratu A., Eta-invariants and Molien series for unimodular groups, Ph.D. Thesis, Massachusetts Institute of Technology, 2001 |
12. |
Degeratu A., Mazzeo R., Fredholm theory for elliptic operators on quasi-asymptotically conical spaces, arXiv: 1406.3465 |
13. |
Gocho T., Nakajima H., “Einstein–Hermitian connections on hyper-Kähler quotients”, J. Math. Soc. Japan, 44 (1992), 43–51 |
14. |
Gonzalez-Sprinberg G., Verdier J.-L., “Construction géométrique de la correspondance de McKay”, Ann. Sci. École Norm. Sup. (4), 16 (1983), 409–449 |
15. |
Hartshorne R., Algebraic geometry, Graduate Texts in Mathematics, 52, Springer-Verlag, New York–Heidelberg, 1977 |
16. |
Hitchin N., “Harmonic spinors”, Adv. Math., 14 (1974), 1–55 |
17. |
Huybrechts D., Fourier–Mukai transforms in algebraic geometry, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, Oxford, 2006 |
18. |
Ito Y., Nakajima H., “McKay correspondence and Hilbert schemes in dimension three”, Topology, 39 (2000), 1155–1191, arXiv: math.AG/9803120 |
19. |
Joyce D. D., Compact manifolds with special holonomy, Oxford Mathematical Monographs, Oxford University Press, Oxford, 2000 |
20. |
King A. D., “Moduli of representations of finite-dimensional algebras”, Quart. J. Math. Oxford Ser. (2), 45 (1994), 515–530 |
21. |
Kronheimer P. B., “The construction of ALE spaces as hyper-Kähler quotients”, J. Differential Geom., 29 (1989), 665–683 |
22. |
Kronheimer P. B., Nakajima H., “Yang–Mills instantons on ALE gravitational instantons”, Math. Ann., 288 (1990), 263–307 |
23. |
McKay J., “Graphs, singularities, and finite groups”, Santa Cruz Conference on Finite Groups (Univ. California, Santa Cruz, Calif., 1979), Proc. Sympos. Pure Math., 37, Amer. Math. Soc., Providence, R.I., 1980, 183–186 |
24. |
Neeman A., Algebraic and analytic geometry, London Mathematical Society Lecture Note Series, 345, Cambridge University Press, Cambridge, 2007 |
25. |
Sardo Infirri A. V., Partial resolutions of orbifold singularities via moduli spaces of HYM-type bundles, arXiv: alg-geom/9610004 |
26. |
Thomas R. P., “Derived categories for the working mathematician”, Winter School on Mirror Symmetry, Vector Bundles and Lagrangian Submanifolds (Cambridge, MA, 1999), AMS/IP Stud. Adv. Math., 23, Amer. Math. Soc., Providence, RI, 2001, 349–361, arXiv: math.AG/0001045 |
27. |
Toen B., $K$-théorie et cohomologie des champs algébriques, Ph.D. Thesis, Université Paul Sabatier, Toulouse, 1999 |
28. |
Walpuski T., Gauge theory on ${\rm G}_2$-manifolds, Ph.D. Thesis, Imperial College London, 2013 |
29. |
Yau S. S.-T., Yu Y., Gorenstein quotient singularities in dimension three, Mem. Amer. Math. Soc., 105, 1993, viii+88 pp. |