RUS  ENG
Ïîëíàÿ âåðñèÿ
ÆÓÐÍÀËÛ // Symmetry, Integrability and Geometry: Methods and Applications

SIGMA, 2016, òîì 12, 041, 16 ñòð. (Mi sigma1123)

Are Orthogonal Separable Coordinates Really Classified?
Konrad Schöbel

Ñïèñîê ëèòåðàòóðû

1. Benenti S., “Orthogonal separable dynamical systems”, Differential Geometry and its Applications (Opava, 1992), Math. Publ., 1, eds. O. Kowalsky, D. Krupka, Silesian University Opava, Opava, 1993, 163–184  mathscinet  zmath
2. Borel A., Linear algebraic groups, Graduate Texts in Mathematics, 126, Springer, New York, 1991  crossref  mathscinet  zmath
3. Boyer C. P., Kalnins E. G., Winternitz P., “Separation of variables for the Hamilton–Jacobi equation on complex projective spaces”, SIAM J. Math. Anal., 16 (1985), 93–109  crossref  mathscinet  zmath  isi
4. Davis M., Januszkiewicz T., Scott R., “Nonpositive curvature of blow-ups”, Selecta Math. (N.S.), 4 (1998), 491–547  crossref  mathscinet  zmath
5. Deligne P., Mumford D., “The irreducibility of the space of curves of given genus”, Inst. Hautes Études Sci. Publ. Math., 36 (1969), 75–109  crossref  mathscinet  zmath
6. Devadoss S. L., “Tessellations of moduli spaces and the mosaic operad”, Homotopy Invariant Algebraic Structures (Baltimore, MD, 1998), Contemp. Math., 239, Amer. Math. Soc., Providence, RI, 1999, 91–114, arXiv: math.AG/9807010  crossref  mathscinet  zmath
7. Devadoss S. L., Read R. C., “Cellular structures determined by polygons and trees”, Ann. Comb., 5 (2001), 71–98, arXiv: math.CO/0008145  crossref  mathscinet  zmath
8. Eisenhart L. P., “Separable systems of Stäckel”, Ann. of Math., 35 (1934), 284–305  crossref  mathscinet
9. Harris J., Algebraic geometry, Graduate Texts in Mathematics, 133, Springer-Verlag, New York, 1992  crossref  mathscinet  zmath
10. Harris J., Morrison I., Moduli of curves, Graduate Texts in Mathematics, 187, Springer-Verlag, New York, 1998  crossref  mathscinet  zmath
11. Horwood J. T., McLenaghan R. G., Smirnov R. G., “Invariant classification of orthogonally separable Hamiltonian systems in Euclidean space”, Comm. Math. Phys., 259 (2005), 670–709, arXiv: math-ph/0605023  crossref  mathscinet  isi
12. Izmest'ev A. A., Pogosyan G. S., Sissakian A. N., Winternitz P., “Contractions of Lie algebras and separation of variables. The $n$-dimensional sphere”, J. Math. Phys., 40 (1999), 1549–1573  crossref  mathscinet  zmath  isi
13. Kalnins E. G., Separation of variables for Riemannian spaces of constant curvature, Pitman Monographs and Surveys in Pure and Applied Mathematics, 28, Longman Scientific & Technical, Harlow; John Wiley & Sons, Inc., New York, 1986  mathscinet  zmath
14. Kalnins E. G., Miller W. Jr., “Conformal Killing tensors and variable separation for Hamilton–Jacobi equations”, SIAM J. Math. Anal., 14 (1983), 126–137  crossref  mathscinet  zmath  isi
15. Kalnins E. G., Miller W. Jr., “Separation of variables on $n$-dimensional Riemannian manifolds. I. The $n$-sphere $S_n$ and Euclidean $n$-space $R^n$”, J. Math. Phys., 27 (1986), 1721–1736  crossref  mathscinet  zmath  isi
16. Kalnins E. G., Miller W. Jr., Reid G. J., “Separation of variables for complex Riemannian spaces of constant curvature. I. Orthogonal separable coordinates for ${\rm S}_{nC}$ and ${\rm E}_{nC}$”, Proc. Roy. Soc. London Ser. A, 394 (1984), 183–206  crossref  mathscinet  zmath  isi
17. Kapranov M. M., “The permutoassociahedron, Mac Lane's coherence theorem and asymptotic zones for the KZ equation”, J. Pure Appl. Algebra, 85 (1993), 119–142  crossref  mathscinet  zmath  isi
18. Knudsen F. F., “The projectivity of the moduli space of stable curves. II. The stacks $M_{g,n}$”, Math. Scand., 52 (1983), 161–199  mathscinet  zmath  isi
19. Knudsen F. F., “The projectivity of the moduli space of stable curves. III. The line bundles on $M_{g,n}$, and a proof of the projectivity of $\overline M_{g,n}$ in characteristic $0$”, Math. Scand., 52 (1983), 200–212  mathscinet  zmath  isi
20. Kress J., Schöbel K., An algebraic geometric classification of superintegrable systems on the Euclidean plane, arXiv: 1602.07890
21. Müller-Hoissen F., Pallo J. M., Stasheff J. (eds.), Associahedra, Tamari lattices and related structures. Tamari memorial Festschrift, Progress in Mathematical Physics, 299, Birkhäuser/Springer, Basel, 2012  crossref  mathscinet
22. Mumford D., Geometric invariant theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, Neue Folge, 34, Springer-Verlag, Berlin–New York, 1965  mathscinet  zmath
23. Neumann C., “De problemate quodam mechanico, quod ad primam integralium ultraellipticorum classem revocatur”, J. Reine Angew. Math., 56 (1859), 46–63  crossref  mathscinet  zmath
24. Nijenhuis A., “$X_{n-1}$-forming sets of eigenvectors”, Indag. Math., 54 (1951), 200–212  crossref  mathscinet  zmath
25. Olevskiĭ M. N., “Triorthogonal systems in spaces of constant curvature in which the equation $\Delta_2u+\lambda u=0$ allows a complete separation of variables”, Mat. Sb., 27 (1950), 379–426  mathnet  mathscinet  zmath
26. Robertson H. P., “Bemerkung über separierbare Systeme in der Wellenmechanik”, Math. Ann., 98 (1928), 749–752  crossref  mathscinet  zmath
27. Schöbel K., “Algebraic integrability conditions for Killing tensors on constant sectional curvature manifolds”, J. Geom. Phys., 62 (2012), 1013–1037, arXiv: 1004.2872  crossref  mathscinet  zmath  isi
28. Schöbel K., “The variety of integrable Killing tensors on the 3-sphere”, SIGMA, 10 (2014), 080, 48 pp., arXiv: 1205.6227  mathnet  crossref  mathscinet  zmath  isi
29. Schöbel K., “An algebraic geometric approach to separation of variables”, Springer Spektrum, Wiesbaden, 2015  crossref  mathscinet
30. Schöbel K., Veselov A. P., “Separation coordinates, moduli spaces and Stasheff polytopes”, Comm. Math. Phys., 337 (2015), 1255–1274, arXiv: 1307.6132  crossref  mathscinet  zmath  isi
31. Stäckel P., Die Integration der Hamilton–Jacobischen Differentialgleichung mittelst Separation der Variablen, Habilitationsschrift, Universität Halle, 1891
32. Stasheff J. D., “Homotopy associativity of $H$-spaces, I”, Trans. Amer. Math. Soc., 108 (1963), 275–292  crossref  mathscinet  zmath
33. Stasheff J. D., “Homotopy associativity of $H$-spaces, II”, Trans. Amer. Math. Soc., 108 (1963), 293–312  crossref  mathscinet  zmath
34. Vilenkin N. Ja., Special functions and group representation theory, Nauka, M., 1965  mathscinet
35. Vilenkin N. Ja., Klimyk A. U., Representation of Lie groups and special functions, v. 2, Mathematics and its Applications (Soviet Series), 74, Class I representations, special functions, and integral transforms, Kluwer Academic Publishers Group, Dordrecht, 1993  crossref  mathscinet  zmath
36. Wolf T., “Structural equations for Killing tensors of arbitrary rank”, Comput. Phys. Comm., 115 (1998), 316–329  crossref  mathscinet  zmath  isi


© ÌÈÀÍ, 2025