|
|
|
Список литературы
|
|
|
1. |
Beckmann R., Clerc J.-L., “Singular invariant trilinear forms and covariant (bi-)differential operators under the conformal group”, J. Funct. Anal., 262 (2012), 4341–4376 |
2. |
Clerc J.-L., “Covariant bi-differential operators on matrix space”, Ann. Inst. Fourier (Grenoble) (to appear) , arXiv: 1601.07016 |
3. |
Eelbode D., Souček V., “Conformally invariant powers of the Dirac operator in Clifford analysis”, Math. Methods Appl. Sci., 33 (2010), 1558–1570 |
4. |
Fischmann M., Juhl A., Somberg P., Conformal symmetry breaking differential operators on differential forms, arXiv: 1605.04517 |
5. |
Gel'fand I. M., Shilov G. E., Generalized functions, v. I, Properties and operations, Academic Press, New York–London, 1964 |
6. |
Juhl A., Families of conformally covariant differential operators, $Q$-curvature and holography, Progress in Mathematics, 275, Birkhäuser Verlag, Basel, 2009 |
7. |
Knapp A. W., Representation theory of semisimple groups. An overview based on examples, Princeton Mathematical Series, 36, Princeton University Press, Princeton, NJ, 1986 |
8. |
Kobayashi T., Kubo T., Pevzner M., Conformal symmetry breaking operators for differential forms on spheres, Lecture Notes in Math., 2170, Springer, Singapore, 2016 |
9. |
Kobayashi T., Pevzner M., “Differential symmetry breaking operators: I. General theory and F-method”, Selecta Math. (N.S.), 22 (2016), 801–845, arXiv: 1301.2111 |
10. |
Kobayashi T., Pevzner M., “Differential symmetry breaking operators: II. Rankin–Cohen operators for symmetric pairs”, Selecta Math. (N.S.), 22 (2016), 847–911, arXiv: 1301.2111 |
11. |
Kobayashi T., Speh B., Symmetry breaking for representations of rank one orthogonal groups, Mem. Amer. Math. Soc., 238, 2015, v+110 pp., arXiv: 1310.3213 |
12. |
Olver P. J., Classical invariant theory, London Mathematical Society Student Texts, 44, Cambridge University Press, Cambridge, 1999 |