RUS  ENG
Ïîëíàÿ âåðñèÿ
ÆÓÐÍÀËÛ // Symmetry, Integrability and Geometry: Methods and Applications

SIGMA, 2017, òîì 13, 043, 31 ñòð. (Mi sigma1243)

Highest $\ell$-Weight Representations and Functional Relations
Khazret S. Nirov, Alexander V. Razumov

Ñïèñîê ëèòåðàòóðû

1. Asherova R. M., Smirnov Yu. F., Tolstoy V. N., “Description of a class of projection operators for semisimple complex Lie algebras”, Math. Notes, 26 (1979), 499–504  mathnet  crossref  mathscinet  scopus
2. Bazhanov V. V., Hibberd A. N., Khoroshkin S. M., “Integrable structure of ${\mathcal W}_3$ conformal field theory, quantum Boussinesq theory and boundary affine Toda theory”, Nuclear Phys. B, 622 (2002), 475–547, arXiv: hep-th/0105177  crossref  mathscinet  zmath  scopus
3. Bazhanov V. V., Lukyanov S. L., Zamolodchikov A. B., “Integrable structure of conformal field theory, quantum KdV theory and thermodynamic Bethe ansatz”, Comm. Math. Phys., 177 (1996), 381–398, arXiv: hep-th/9412229  crossref  mathscinet  zmath
4. Bazhanov V. V., Lukyanov S. L., Zamolodchikov A. B., “Integrable structure of conformal field theory. II. ${\rm Q}$-operator and DDV equation”, Comm. Math. Phys., 190 (1997), 247–278, arXiv: hep-th/9604044  crossref  mathscinet  zmath
5. Bazhanov V. V., Lukyanov S. L., Zamolodchikov A. B., “Integrable structure of conformal field theory. III. The Yang–Baxter relation”, Comm. Math. Phys., 200 (1999), 297–324, arXiv: hep-th/9805008  crossref  mathscinet  zmath
6. Beck J., “Braid group action and quantum affine algebras”, Comm. Math. Phys., 165 (1994), 555–568, arXiv: hep-th/9404165  crossref  mathscinet  zmath  scopus
7. Boos H., Göhmann F., Klümper A., Nirov Kh. S., Razumov A. V., “Exercises with the universal $R$-matrix”, J. Phys. A: Math. Theor., 43 (2010), 415208, 35 pp., arXiv: 1004.5342  crossref  mathscinet  zmath  scopus
8. Boos H., Göhmann F., Klümper A., Nirov Kh.S., Razumov A. V., “Universal integrability objects”, Theoret. and Math. Phys., 174 (2013), 21–39, arXiv: 1205.4399  mathnet  crossref  mathscinet  zmath  scopus
9. Boos H., Göhmann F., Klümper A., Nirov Kh.S., Razumov A. V., “Quantum groups and functional relations for higher rank”, J. Phys. A: Math. Theor., 47 (2014), 275201, 47 pp., arXiv: 1312.2484  crossref  mathscinet  zmath  scopus
10. Boos H., Göhmann F., Klümper A., Nirov Kh. S., Razumov A. V., “Universal $R$-matrix and functional relations”, Rev. Math. Phys., 26 (2014), 1430005, 66 pp., arXiv: 1205.1631  crossref  mathscinet  zmath  elib  scopus
11. Boos H., Göhmann F., Klümper A., Nirov Kh. S., Razumov A. V., “Oscillator versus prefundamental representations”, J. Math. Phys., 57 (2016), 111702, 23 pp., arXiv: 1512.04446  crossref  mathscinet  zmath  elib  scopus
12. Boos H., Göhmann F., Klümper A., Nirov Kh. S., Razumov A. V., Oscillator versus prefundamental representations. II. Arbitrary higher ranks, arXiv: 1701.0262  mathscinet
13. Chari V., Pressley A., “Quantum affine algebras”, Comm. Math. Phys., 142 (1991), 261–283  crossref  mathscinet  zmath  scopus
14. Chari V., Pressley A., A guide to quantum groups, Cambridge University Press, Cambridge, 1994  mathscinet  zmath
15. Damiani I., “Drinfeld realization of affine quantum algebras: the relations”, Publ. Res. Inst. Math. Sci., 48 (2012), 661–733, arXiv: 1406.6729  crossref  mathscinet  zmath  scopus
16. Damiani I., “From the Drinfeld realization to the Drinfeld–Jimbo presentation of affine quantum algebras: injectivity”, Publ. Res. Inst. Math. Sci., 51 (2015), 131–171, arXiv: 1407.0341  crossref  mathscinet  zmath  scopus
17. Drinfel'd V. G., “Hopf algebras and the quantum Yang–Baxter equation”, Sov. Math. Dokl., 32 (1985), 254–258  mathscinet
18. Drinfel'd V. G., “Quantum groups”, Proceedings of the International Congress of Mathematicians (Berkeley, Calif., 1986), v. 1, 2, Amer. Math. Soc., Providence, RI, 1987, 798–820  mathscinet
19. Drinfel'd V. G., “A new realization of Yangians and of quantum affine algebras”, Sov. Math. Dokl., 36 (1988), 212–216  mathscinet  zmath
20. Etingof P. I., Frenkel I. B., Kirillov Jr. A.A., Lectures on representation theory and Knizhnik–Zamolodchikov equations, Mathematical Surveys and Monographs, 58, Amer. Math. Soc., Providence, RI, 1998  crossref  mathscinet  zmath
21. Feigin B., Jimbo M., Miwa T., Mukhin E., Finite type modules and Bethe ansatz equations, arXiv: 1609.05724  mathscinet
22. Frenkel E., Hernandez D., “Baxter's relations and spectra of quantum integrable models”, Duke Math. J., 164 (2015), 2407–2460, arXiv: 1308.3444  crossref  mathscinet  zmath  elib  scopus
23. Frenkel E., Reshetikhin N., “The $q$-characters of representations of quantum affine algebras and deformations of $\mathcal W$-algebras”, Recent Developments in Quantum Affine Algebras and Related Topics (Raleigh, NC, 1998), Contemp. Math., 248, Amer. Math. Soc., Providence, RI, 1999, 163–205, arXiv: math.QA/9810055  crossref  mathscinet  zmath
24. Hernandez D., “Representations of quantum affinizations and fusion product”, Transform. Groups, 10 (2005), 163–200, arXiv: math.QA/0312336  crossref  mathscinet  zmath  scopus
25. Hernandez D., “Drinfeld coproduct, quantum fusion tensor category and applications”, Proc. Lond. Math. Soc., 95 (2007), 567–608, arXiv: math.QA/0504269  crossref  mathscinet  zmath  elib  scopus
26. Hernandez D., Jimbo M., “Asymptotic representations and Drinfeld rational fractions”, Compos. Math., 148 (2012), 1593–1623, arXiv: 1104.1891  crossref  mathscinet  zmath  elib  scopus
27. Jimbo M., “A $q$-difference analogue of $U({\mathfrak g})$ and the Yang–Baxter equation”, Lett. Math. Phys., 10 (1985), 63–69  crossref  mathscinet  zmath  scopus
28. Jimbo M., “A $q$-analogue of $U({\mathfrak g}{\mathfrak l}(N+1))$, Hecke algebra, and the Yang–Baxter equation”, Lett. Math. Phys., 11 (1986), 247–252  crossref  mathscinet  zmath  scopus
29. Jimbo M., Miwa T., Algebraic analysis of solvable lattice models, CBMS Regional Conference Series in Mathematics, 85, Amer. Math. Soc., Providence, RI, 1995  crossref  mathscinet  zmath
30. Kac V. G., Infinite-dimensional Lie algebras, 3rd ed., Cambridge University Press, Cambridge, 1990  crossref  mathscinet  zmath
31. Khoroshkin S. M., Tolstoy V. N., “On Drinfel'd's realization of quantum affine algebras”, J. Geom. Phys., 11 (1993), 445–452  crossref  mathscinet  zmath  scopus
32. Khoroshkin S. M., Tolstoy V. N., Twisting of quantum (super)algebras. Connection of Drinfeld's and Cartan–Weyl realizations for quantum affine algebras, arXiv: hep-th/9404036  mathscinet
33. Leznov A. N., Savel'ev M. V., “A parametrization of compact groups”, Funct. Anal. Appl., 8 (1974), 347–348  mathnet  crossref  zmath  scopus
34. Meneghelli C., Teschner J., Integrable light-cone lattice discretizations from the universal ${R}$-matrix, arXiv: 1504.04572
35. Mukhin E., Young C. A. S., Trans. Amer. Math. Soc., 366 (2014), Affinization of category $\mathcal{O}$ for quantum groups, arXiv: 1204.2769  crossref  mathscinet
36. Nirov Kh. S., Razumov A. V., “Quantum groups and functional relations for lower rank”, J. Geom. Phys., 112 (2017), 1–28, arXiv: 1412.7342  crossref  mathscinet  zmath  elib  scopus
37. Nirov Kh. S., Razumov A. V., Quantum groups, {V}erma modules and $q$-oscillators: General linear case, arXiv: 1610.02901
38. Razumov A. V., “Monodromy operators for higher rank”, J. Phys. A: Math. Theor., 46 (2013), 385201, 24 pp., arXiv: 1211.3590  crossref  mathscinet  zmath  scopus
39. Tolstoy V. N., Khoroshkin S. M., “The universal $R$-matrix for quantum untwisted affine Lie algebras”, Funct. Anal. Appl., 26 (1992), 69–71  mathnet  crossref  mathscinet  scopus
40. Yamane H., “A Poincaré–Birkhoff–Witt theorem for quantized universal enveloping algebras of type $A_N$”, Publ. Res. Inst. Math. Sci., 25 (1989), 503–520  crossref  mathscinet  zmath  scopus


© ÌÈÀÍ, 2025