RUS  ENG
Ïîëíàÿ âåðñèÿ
ÆÓÐÍÀËÛ // Symmetry, Integrability and Geometry: Methods and Applications

SIGMA, 2017, òîì 13, 069, 8 ñòð. (Mi sigma1269)

An Elliptic Garnier System from Interpolation
Yasuhiko Yamada

Ñïèñîê ëèòåðàòóðû

1. Kajiwara K., Noumi M., Yamada Y., “Geometric aspects of {P}ainlevé equations”, J. Phys. A: Math. Theor., 50 (2017), 073001, 164 pp., arXiv: 1509.08186  crossref  mathscinet  zmath  scopus
2. Nagao H., Yamada Y., “Study of $q$-Garnier system by Padé method”, Funkcial. Ekvac. (to appear) , arXiv: 1601.01099
3. Nijhoff F., Delice N., On elliptic Lax pairs and isomonodromic deformation systems for elliptic lattice equations, arXiv: 1605.00829  mathscinet
4. Noumi M., Tsujimoto S., Yamada Y., “Padé interpolation for elliptic Painlevé equation”, Symmetries, Integrable Systems and Representations, Springer Proc. Math. Stat., 40, Springer, Heidelberg, 2013, 463–482, arXiv: 1204.0294  crossref  mathscinet  zmath  scopus
5. Ohta Y., Ramani A., Grammaticos B., “An affine Weyl group approach to the eight-parameter discrete Painlevé equation”, J. Phys. A: Math. Gen., 34 (2001), 10523–10532  crossref  mathscinet  zmath  scopus
6. Ormerod C. M., Rains E. M., “Commutation relations and discrete Garnier systems”, SIGMA, 12 (2016), 110, 50 pp., arXiv: 1601.06179  mathnet  crossref  mathscinet  zmath  scopus
7. Ormerod C. M., Rains E. M., “An elliptic Garnier system”, Comm. Math. Phys., 355 (2017), 741–766, arXiv: 1607.07831  crossref  mathscinet  scopus
8. Rains E. M., “An isomonodromy interpretation of the hypergeometric solution of the elliptic Painlevé equation (and generalizations)”, SIGMA, 7 (2011), 088, 24 pp., arXiv: 0807.0258  mathnet  crossref  mathscinet  zmath  scopus
9. Rains E. M., The noncommutative geometry of elliptic difference equations, arXiv: 1607.08876
10. Ruijsenaars S. N. M., “First order analytic difference equations and integrable quantum systems”, J. Math. Phys., 38 (1997), 1069–1146  crossref  mathscinet  zmath
11. Sakai H., “Rational surfaces associated with affine root systems and geometry of the Painlevé equations”, Comm. Math. Phys., 220 (2001), 165–229  crossref  mathscinet  zmath  scopus
12. Spiridonov V. P., “Essays on the theory of elliptic hypergeometric functions”, Russian Math. Surveys, 63 (2008), 405–472, arXiv: 0805.3135  mathnet  crossref  mathscinet  zmath  elib  scopus
13. Yamada Y., “A Lax formalism for the elliptic difference Painlevé equation”, SIGMA, 5 (2009), 042, 15 pp., arXiv: 0811.1796  mathnet  crossref  mathscinet  zmath  scopus
14. Yamada Y., “Padé method to Painlevé equations”, Funkcial. Ekvac., 52 (2009), 83–92  crossref  mathscinet  zmath  scopus
15. Zhedanov A. S., “Padé interpolation table and biorthogonal rational functions”, Elliptic Integrable Systems, Rokko Lectures in Mathematics, 18, Kobe University, 2005, 323–363


© ÌÈÀÍ, 2025