|
|
|
Ñïèñîê ëèòåðàòóðû
|
|
|
1. |
Kajiwara K., Noumi M., Yamada Y., “Geometric aspects of {P}ainlevé equations”, J. Phys. A: Math. Theor., 50 (2017), 073001, 164 pp., arXiv: 1509.08186 |
2. |
Nagao H., Yamada Y., “Study of $q$-Garnier system by Padé method”, Funkcial. Ekvac. (to appear) , arXiv: 1601.01099 |
3. |
Nijhoff F., Delice N., On elliptic Lax pairs and isomonodromic deformation systems for elliptic lattice equations, arXiv: 1605.00829 |
4. |
Noumi M., Tsujimoto S., Yamada Y., “Padé interpolation for elliptic Painlevé equation”, Symmetries, Integrable Systems and Representations, Springer Proc. Math. Stat., 40, Springer, Heidelberg, 2013, 463–482, arXiv: 1204.0294 |
5. |
Ohta Y., Ramani A., Grammaticos B., “An affine Weyl group approach to the eight-parameter discrete Painlevé equation”, J. Phys. A: Math. Gen., 34 (2001), 10523–10532 |
6. |
Ormerod C. M., Rains E. M., “Commutation relations and discrete Garnier systems”, SIGMA, 12 (2016), 110, 50 pp., arXiv: 1601.06179 |
7. |
Ormerod C. M., Rains E. M., “An elliptic Garnier system”, Comm. Math. Phys., 355 (2017), 741–766, arXiv: 1607.07831 |
8. |
Rains E. M., “An isomonodromy interpretation of the hypergeometric solution of the elliptic Painlevé equation (and generalizations)”, SIGMA, 7 (2011), 088, 24 pp., arXiv: 0807.0258 |
9. |
Rains E. M., The noncommutative geometry of elliptic difference equations, arXiv: 1607.08876 |
10. |
Ruijsenaars S. N. M., “First order analytic difference equations and integrable quantum systems”, J. Math. Phys., 38 (1997), 1069–1146 |
11. |
Sakai H., “Rational surfaces associated with affine root systems and geometry of the Painlevé equations”, Comm. Math. Phys., 220 (2001), 165–229 |
12. |
Spiridonov V. P., “Essays on the theory of elliptic hypergeometric functions”, Russian Math. Surveys, 63 (2008), 405–472, arXiv: 0805.3135 |
13. |
Yamada Y., “A Lax formalism for the elliptic difference Painlevé equation”, SIGMA, 5 (2009), 042, 15 pp., arXiv: 0811.1796 |
14. |
Yamada Y., “Padé method to Painlevé equations”, Funkcial. Ekvac., 52 (2009), 83–92 |
15. |
Zhedanov A. S., “Padé interpolation table and biorthogonal rational functions”, Elliptic Integrable Systems, Rokko Lectures in Mathematics, 18, Kobe University, 2005, 323–363 |