|
|
|
References
|
|
|
1. |
Anapolitanos I., Lewin M., Roth M., Differentiability of the van der Waals interaction between two atoms, arXiv: 1902.06683 |
2. |
Anapolitanos I., Sigal I.M., “Long-range behavior of the van der Waals force”, Comm. Pure Appl. Math., 70 (2017), 1633–1671, arXiv: 1205.4652 |
3. |
Arai A., Hirokawa M., “On the existence and uniqueness of ground states of a generalized spin-boson model”, J. Funct. Anal., 151 (1997), 455–503 |
4. |
Bach V., Fröhlich J., Sigal I.M., “Spectral analysis for systems of atoms and molecules coupled to the quantized radiation field”, Comm. Math. Phys., 207 (1999), 249–290 |
5. |
Bordag M., Mohideen U., Mostepanenko V.M., “New developments in the Casimir effect”, Phys. Rep., 353 (2001), 1–205, arXiv: quant-ph/0106045 |
6. |
Casimir H.B.G., Polder D., “The influence of retardation on the London–van der Waals forces”, Phys. Rev., 73 (1948), 360–372 |
7. |
Craig D.P., Thirunamachandran T., Molecular quantum electrodynamics: An introduction to radiation-molecule interactions, Dover Publications, New York, 1998 |
8. |
Feynman R.P., “Mathematical formulation of the quantum theory of electromagnetic interaction”, Phys. Rev., 80 (1950), 440–457 |
9. |
Glimm J., Jaffe A., “The $\lambda \big(\Pi^{4}\big)_{2}$ quantum field theory without cutoffs. II The field operators and the approximate vacuum”, Ann. of Math., 91 (1970), 362–401 |
10. |
Griesemer M., Lieb E.H., Loss M., “Ground states in non-relativistic quantum electrodynamics”, Invent. Math., 145 (2001), 557–595, arXiv: math-ph/0007014 |
11. |
Keller O., Quantum theory of near-field electrodynamics, Springer-Verlag, Berlin–Heidelberg, 2011 |
12. |
Koppen M., Van der Waals forces in the context of non-relativistic quantum electrodynamics, Ph.D. Thesis, Technische Universität München, 2011 |
13. |
Levin F.S., Micha D.A. (Eds.), Long-range Casimir forces. Theory and experiments on atomic systems, Springer, New York, 1993 |
14. |
Lőrinczi J., Hiroshima F., Betz V., Feynman–Kac-type theorems and Gibbs measures on path space. With applications to rigorous quantum field theory, De Gruyter Studies in Mathematics, 34, Walter de Gruyter & Co., Berlin, 2011 |
15. |
Lieb E.H., Thirring W.E., “Universal nature of van der Waals forces for Coulomb systems”, Phys. Rev. A, 34 (1986), 40–46 |
16. |
London F., “Zur Theorie und Systematik der Molekularkräfte”, Z. Phys., 63 (1930), 245–279 |
17. |
Loudon R., The quantum theory of light, Oxford University Press, Oxford, 2000 |
18. |
Martin P.A., Bünzli P.R., “The Casimir effect”, Acta Phys. Polon. B, 37 (2006), 2503–2559, arXiv: cond-mat/0602559 |
19. |
Milonni P.W., The quantum vacuum. An introduction to quantum electrodynamics, Academic Press, Boston, 1994 |
20. |
Miyao T., Spohn H., “The retarded van der Waals potential: revisited”, J. Math. Phys., 50 (2009), 072103, 19 pp., arXiv: 0901.3678 |
21. |
Miyao T., Spohn H., “Scale dependence of the retarded van der Waals potential”, J. Math. Phys., 53 (2012), 095215, 15 pp., arXiv: 1205.1091 |
22. |
Morgan III J.D., Simon B., “Behavior of molecular potential energy curves for large nuclear separations”, Int. J. Quantum Chem., 17 (1980), 1143–1166 |
23. |
Reed M., Simon B., Methods of modern mathematical physics, v. I, Functional analysis, 2nd ed., Academic Press Inc., New York, 1980 |
24. |
Spohn H., Dynamics of charged particles and their radiation field, Cambridge University Press, Cambridge, 2004 |