RUS  ENG
Full version
JOURNALS // Symmetry, Integrability and Geometry: Methods and Applications

SIGMA, 2020, Volume 16, 036, 34 pp. (Mi sigma1573)

Note on the Retarded van der Waals Potential within the Dipole Approximation
Tadahiro Miyao

References

1. Anapolitanos I., Lewin M., Roth M., Differentiability of the van der Waals interaction between two atoms, arXiv: 1902.06683
2. Anapolitanos I., Sigal I.M., “Long-range behavior of the van der Waals force”, Comm. Pure Appl. Math., 70 (2017), 1633–1671, arXiv: 1205.4652  crossref  mathscinet  zmath  scopus
3. Arai A., Hirokawa M., “On the existence and uniqueness of ground states of a generalized spin-boson model”, J. Funct. Anal., 151 (1997), 455–503  crossref  mathscinet  zmath  scopus
4. Bach V., Fröhlich J., Sigal I.M., “Spectral analysis for systems of atoms and molecules coupled to the quantized radiation field”, Comm. Math. Phys., 207 (1999), 249–290  crossref  mathscinet  zmath  adsnasa  scopus
5. Bordag M., Mohideen U., Mostepanenko V.M., “New developments in the Casimir effect”, Phys. Rep., 353 (2001), 1–205, arXiv: quant-ph/0106045  crossref  mathscinet  zmath  adsnasa  scopus
6. Casimir H.B.G., Polder D., “The influence of retardation on the London–van der Waals forces”, Phys. Rev., 73 (1948), 360–372  crossref  zmath  adsnasa  scopus
7. Craig D.P., Thirunamachandran T., Molecular quantum electrodynamics: An introduction to radiation-molecule interactions, Dover Publications, New York, 1998
8. Feynman R.P., “Mathematical formulation of the quantum theory of electromagnetic interaction”, Phys. Rev., 80 (1950), 440–457  crossref  mathscinet  zmath  adsnasa  scopus
9. Glimm J., Jaffe A., “The $\lambda \big(\Pi^{4}\big)_{2}$ quantum field theory without cutoffs. II The field operators and the approximate vacuum”, Ann. of Math., 91 (1970), 362–401  crossref  mathscinet  zmath
10. Griesemer M., Lieb E.H., Loss M., “Ground states in non-relativistic quantum electrodynamics”, Invent. Math., 145 (2001), 557–595, arXiv: math-ph/0007014  crossref  mathscinet  zmath  adsnasa  scopus
11. Keller O., Quantum theory of near-field electrodynamics, Springer-Verlag, Berlin–Heidelberg, 2011  crossref  zmath  adsnasa
12. Koppen M., Van der Waals forces in the context of non-relativistic quantum electrodynamics, Ph.D. Thesis, Technische Universität München, 2011
13. Levin F.S., Micha D.A. (Eds.), Long-range Casimir forces. Theory and experiments on atomic systems, Springer, New York, 1993  crossref
14. Lőrinczi J., Hiroshima F., Betz V., Feynman–Kac-type theorems and Gibbs measures on path space. With applications to rigorous quantum field theory, De Gruyter Studies in Mathematics, 34, Walter de Gruyter & Co., Berlin, 2011  crossref  mathscinet
15. Lieb E.H., Thirring W.E., “Universal nature of van der Waals forces for Coulomb systems”, Phys. Rev. A, 34 (1986), 40–46  crossref  adsnasa  scopus
16. London F., “Zur Theorie und Systematik der Molekularkräfte”, Z. Phys., 63 (1930), 245–279  crossref  adsnasa  scopus
17. Loudon R., The quantum theory of light, Oxford University Press, Oxford, 2000  zmath
18. Martin P.A., Bünzli P.R., “The Casimir effect”, Acta Phys. Polon. B, 37 (2006), 2503–2559, arXiv: cond-mat/0602559  adsnasa
19. Milonni P.W., The quantum vacuum. An introduction to quantum electrodynamics, Academic Press, Boston, 1994  mathscinet
20. Miyao T., Spohn H., “The retarded van der Waals potential: revisited”, J. Math. Phys., 50 (2009), 072103, 19 pp., arXiv: 0901.3678  crossref  mathscinet  zmath  adsnasa  elib  scopus
21. Miyao T., Spohn H., “Scale dependence of the retarded van der Waals potential”, J. Math. Phys., 53 (2012), 095215, 15 pp., arXiv: 1205.1091  crossref  mathscinet  zmath  adsnasa  scopus
22. Morgan III J.D., Simon B., “Behavior of molecular potential energy curves for large nuclear separations”, Int. J. Quantum Chem., 17 (1980), 1143–1166  crossref  scopus
23. Reed M., Simon B., Methods of modern mathematical physics, v. I, Functional analysis, 2nd ed., Academic Press Inc., New York, 1980  mathscinet  zmath
24. Spohn H., Dynamics of charged particles and their radiation field, Cambridge University Press, Cambridge, 2004  crossref  mathscinet  zmath  adsnasa


© Steklov Math. Inst. of RAS, 2025