|
|
|
Ñïèñîê ëèòåðàòóðû
|
|
|
1. |
Cheeger J., Ebin D. G., Comparison theorems in Riemannian geometry, AMS Chelsea Publishing, Providence, RI, 2008 |
2. |
Dai X., Wang X., Wei G., “On the variational stability of Kähler–Einstein metrics”, Comm. Anal. Geom., 15 (2007), 669–693 |
3. |
Goette S., “Scalar curvature estimates by parallel alternating torsion”, Trans. Amer. Math. Soc., 363 (2011), 165–183, arXiv: 0709.4586 |
4. |
Goette S., Semmelmann U., “Scalar curvature estimates for compact symmetric spaces”, Differential Geom. Appl., 16 (2002), 65–78, arXiv: math.DG/0010199 |
5. |
Gromov M., “Positive curvature, macroscopic dimension, spectral gaps and higher signatures”, Functional Analysis on the Eve of the 21st Century (New Brunswick, NJ, 1993), v. II, Progr. Math., 132, Birkhäuser Boston, Boston, MA, 1996, 1–213 |
6. |
Gromov M., Four lectures on scalar curvature, arXiv: 1908.10612 |
7. |
Gromov M., Lawson Jr. H.B., “Spin and scalar curvature in the presence of a fundamental group. I”, Ann. of Math., 111 (1980), 209–230 |
8. |
Kramer W., “The scalar curvature on totally geodesic fiberings”, Ann. Global Anal. Geom., 18 (2000), 589–600 |
9. |
Listing M., Scalar curvature on compact symmetric spaces, arXiv: 1007.1832 |
10. |
Llarull M., “Sharp estimates and the Dirac operator”, Math. Ann., 310 (1998), 55–71 |
11. |
Milnor J., “Curvatures of left invariant metrics on Lie groups”, Adv. Math., 21 (1976), 293–329 |
12. |
Min-Oo M., “Scalar curvature rigidity of certain symmetric spaces”, Geometry, Topology, and Dynamics (Montreal, PQ, 1995), CRM Proc. Lecture Notes, 15, Amer. Math. Soc., Providence, RI, 1998, 127–136 |
13. |
Schoen R., Yau S. T., “Existence of incompressible minimal surfaces and the topology of three-dimensional manifolds with nonnegative scalar curvature”, Ann. of Math., 110 (1979), 127–142 |
14. |
Schoen R., Yau S. T., “On the structure of manifolds with positive scalar curvature”, Manuscripta Math., 28 (1979), 159–183 |
15. |
Wang M. Y., Ziller W., “Existence and nonexistence of homogeneous Einstein metrics”, Invent. Math., 84 (1986), 177–194 |