RUS  ENG
Ïîëíàÿ âåðñèÿ
ÆÓÐÍÀËÛ // Symmetry, Integrability and Geometry: Methods and Applications

SIGMA, 2020, òîì 16, 068, 6 ñòð. (Mi sigma1605)

Gromov Rigidity of Bi-Invariant Metrics on Lie Groups and Homogeneous Spaces
Yukai Sun, Xianzhe Dai

Ñïèñîê ëèòåðàòóðû

1. Cheeger J., Ebin D. G., Comparison theorems in Riemannian geometry, AMS Chelsea Publishing, Providence, RI, 2008  crossref  mathscinet  zmath
2. Dai X., Wang X., Wei G., “On the variational stability of Kähler–Einstein metrics”, Comm. Anal. Geom., 15 (2007), 669–693  crossref  mathscinet  zmath
3. Goette S., “Scalar curvature estimates by parallel alternating torsion”, Trans. Amer. Math. Soc., 363 (2011), 165–183, arXiv: 0709.4586  crossref  mathscinet  zmath  scopus
4. Goette S., Semmelmann U., “Scalar curvature estimates for compact symmetric spaces”, Differential Geom. Appl., 16 (2002), 65–78, arXiv: math.DG/0010199  crossref  mathscinet  zmath  scopus
5. Gromov M., “Positive curvature, macroscopic dimension, spectral gaps and higher signatures”, Functional Analysis on the Eve of the 21st Century (New Brunswick, NJ, 1993), v. II, Progr. Math., 132, Birkhäuser Boston, Boston, MA, 1996, 1–213  crossref  mathscinet  zmath
6. Gromov M., Four lectures on scalar curvature, arXiv: 1908.10612
7. Gromov M., Lawson Jr. H.B., “Spin and scalar curvature in the presence of a fundamental group. I”, Ann. of Math., 111 (1980), 209–230  crossref  mathscinet  zmath
8. Kramer W., “The scalar curvature on totally geodesic fiberings”, Ann. Global Anal. Geom., 18 (2000), 589–600  crossref  mathscinet  zmath  scopus
9. Listing M., Scalar curvature on compact symmetric spaces, arXiv: 1007.1832
10. Llarull M., “Sharp estimates and the Dirac operator”, Math. Ann., 310 (1998), 55–71  crossref  mathscinet  zmath  scopus
11. Milnor J., “Curvatures of left invariant metrics on Lie groups”, Adv. Math., 21 (1976), 293–329  crossref  mathscinet  zmath  scopus
12. Min-Oo M., “Scalar curvature rigidity of certain symmetric spaces”, Geometry, Topology, and Dynamics (Montreal, PQ, 1995), CRM Proc. Lecture Notes, 15, Amer. Math. Soc., Providence, RI, 1998, 127–136  crossref  mathscinet  zmath
13. Schoen R., Yau S. T., “Existence of incompressible minimal surfaces and the topology of three-dimensional manifolds with nonnegative scalar curvature”, Ann. of Math., 110 (1979), 127–142  crossref  mathscinet  zmath
14. Schoen R., Yau S. T., “On the structure of manifolds with positive scalar curvature”, Manuscripta Math., 28 (1979), 159–183  crossref  mathscinet  zmath  scopus
15. Wang M. Y., Ziller W., “Existence and nonexistence of homogeneous Einstein metrics”, Invent. Math., 84 (1986), 177–194  crossref  mathscinet  zmath  adsnasa  scopus


© ÌÈÀÍ, 2025