|
|
|
References
|
|
|
1. |
Abe T., Enomoto N., Feigin M., Yoshinaga M., Free reflection multiarrangements and quasi-invariants, in preparation |
2. |
Abe T., Suyama D., “A basis construction of the extended Catalan and Shi arrangements of the type $A_2$”, J. Algebra, 493 (2018), 20–35, arXiv: 1312.5524 |
3. |
Athanasiadis C. A., “On free deformations of the braid arrangement”, European J. Combin., 19 (1998), 7–18 |
4. |
Bandlow J., Musiker G., “A new characterization for the $m$-quasiinvariants of $S_n$ and explicit basis for two row hook shapes”, J. Combin. Theory Ser. A, 115 (2008), 1333–1357, arXiv: 0707.3174 |
5. |
Chalykh O. A., Veselov A. P., “Commutative rings of partial differential operators and Lie algebras”, Comm. Math. Phys., 126 (1990), 597–611 |
6. |
Edelman P. H., Reiner V., “Free arrangements and rhombic tilings”, Discrete Comput. Geom., 15 (1996), 307–340 |
7. |
Feigin M., Private communication |
8. |
Feigin M., Veselov A. P., “Quasi-invariants of Coxeter groups and $m$-harmonic polynomials”, Int. Math. Res. Not., 2002 (2002), 521–545, arXiv: math-ph/0105014 |
9. |
Felder G., Veselov A. P., “Action of Coxeter groups on $m$-harmonic polynomials and Knizhnik–Zamolodchikov equations”, Mosc. Math. J., 3 (2003), 1269–1291, arXiv: math.QA/0108012 |
10. |
Gao R., Pei D., Terao H., “The Shi arrangement of the type $D_\ell$”, Proc. Japan Acad. Ser. A Math. Sci., 88 (2012), 41–45, arXiv: 1109.1381 |
11. |
Orlik P., Terao H., Arrangements of hyperplanes, Grundlehren der Mathematischen Wissenschaften, 300, Springer-Verlag, Berlin, 1992 |
12. |
Postnikov A., Stanley R. P., “Deformations of Coxeter hyperplane arrangements”, J. Combin. Theory Ser. A, 91 (2000), 544–597, arXiv: math.CO/9712213 |
13. |
Saito K., “Theory of logarithmic differential forms and logarithmic vector fields”, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 27 (1980), 265–291 |
14. |
Saito K., “Period mapping associated to a primitive form”, Publ. Res. Inst. Math. Sci., 19 (1983), 1231–1264 |
15. |
Saito K., “On a linear structure of the quotient variety by a finite reflexion group”, Publ. Res. Inst. Math. Sci., 29 (1993), 535–579 |
16. |
Saito K., “Uniformization of the orbifold of a finite reflection group”, Frobenius Manifolds, Aspects Math., E36, Friedr. Vieweg, Wiesbaden, 2004, 265–320 |
17. |
Shi J.-Y., The Kazhdan–Lusztig cells in certain affine Weyl groups, Lecture Notes in Mathematics, 1179, Springer-Verlag, Berlin, 1986 |
18. |
Suyama D., “A basis construction for the Shi arrangement of the type $B_\ell$ or $C_\ell$”, Comm. Algebra, 43 (2015), 1435–1448, arXiv: 1205.6294 |
19. |
Suyama D., Terao H., “The Shi arrangements and the Bernoulli polynomials”, Bull. Lond. Math. Soc., 44 (2012), 563–570, arXiv: 1103.3214 |
20. |
Terao H., “Multiderivations of Coxeter arrangements”, Invent. Math., 148 (2002), 659–674, arXiv: math.CO/0011247 |
21. |
Terao H., “The Hodge filtration and the contact-order filtration of derivations of Coxeter arrangements”, Manuscripta Math., 118 (2005), 1–9, arXiv: math.CO/0205058 |
22. |
Tsuchida T., “On quasiinvariants of $S_n$ of hook shape”, Osaka J. Math., 47 (2010), 461–485, arXiv: 0807.1892 |
23. |
Yoshinaga M., “The primitive derivation and freeness of multi-Coxeter arrangements”, Proc. Japan Acad. Ser. A Math. Sci., 78 (2002), 116–119, arXiv: math.CO/0206216 |
24. |
Yoshinaga M., “Characterization of a free arrangement and conjecture of Edelman and Reiner”, Invent. Math., 157 (2004), 449–454 |
25. |
Yoshinaga M., “Freeness of hyperplane arrangements and related topics”, Ann. Fac. Sci. Toulouse Math., 23 (2014), 483–512, arXiv: 1212.3523 |
26. |
Ziegler G. M., “Multiarrangements of hyperplanes and their freeness”, Singularities (Iowa City, IA, 1986), Contemp. Math., 90, Amer. Math. Soc., Providence, RI, 1989, 345–359 |