RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications

SIGMA, 2007, том 3, 063, 15 стр. (Mi sigma189)

The Relationship between Zhedanov's Algebra $AW(3)$ and the Double Affine Hecke Algebra in the Rank One Case
Tom H. Koornwinder

Список литературы

3. Askey R., Wilson J., Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials, Mem. Amer. Math. Soc., no. 319, 1985  mathscinet
4. Cheredni I., “Double affine Hecke algebras, Knizhnik–Zamolodchikov equations, and Macdonald's operators”, Int. Math. Res. Not., no. 9 (1992), 171–180  crossref  mathscinet
5. Gasper G., Rahman M., Basic hypergeometric series, 2nd ed., Cambridge University Press, 2004  mathscinet  zmath
6. Grünbaum F. A., Haine L., “On a $q$-analogue of the string equation and a generalization of the classical orthogonal polynomials”, Algebraic Methods and $q$-Special Functions, CRM Proc. Lecture Notes, 22, eds. J. F. van Diejen and L. Vinet, Amer. Math. Soc., 1999, 171–181  mathscinet  zmath
7. Koekoek R., Swarttouw R. F., The Askey-scheme of hypergeometric orthogonal polynomials and its $q$-analogue, Report 98-17, Faculty of Technical Mathematics and Informatics, Delft University of Technology, 1998; http://aw.twi.tudelft.nl/~koekoek/askey/
8. Koornwinder T. H., “The structure relation for Askey–Wilson polynomials”, J. Comput. Appl. Math., 207:2 (2007), 214–226  crossref  mathscinet  zmath  adsnasa  isi; math.CA/0601303  mathscinet
9. Macdonald I. G., Affine Hecke algebra and orthogonal polynomials, Cambridge University Press, 2003  mathscinet  zmath
10. NCAlgebra: a “Non Commutative Algebra” package running under Mathematica${}^{\footnotesize\textregistered}$, http://www.math.ucsd.edu/~ncalg/
11. Noumi M., Stokman J. V., “Askey–Wilson polynomials: an affine Hecke algebraic approach”, Laredo Lectures on Orthogonal Polynomials and Special Functions, Nova Sci. Publ., Hauppauge, NY, 2004, 111–144  mathscinet  zmath; math.QA/0001033
12. Rains E. M., “A difference integral representation of Koornwinder polynomials, in Jack, Hall–Littlewood and Macdonald Polynomials”, Contemp. Math., 417 (2006), 319–333  mathscinet  zmath; math.CA/0409437
13. Sahi S., “Nonsymmetric Koornwinder polynomials and duality”, Ann. of Math. (2), 150 (1999), 267–282  crossref  mathscinet  zmath  isi; q-alg/9710032  mathscinet
14. Sahi S., “Some properties of Koornwinder polynomials, in $q$-Series from a Contemporary Perspective”, Contemp. Math., 254 (2000), 395–411  mathscinet  zmath
15. Sahi S., “Raising and lowering operators for Askey–Wilson polynomials”, SIGMA, 3 (2007), 002, 11 pp., ages  mathnet  mathscinet  zmath; math.QA/0701134
16. Stokman J. V., “Koornwinder polynomials and affine Hecke algebras”, Int. Math. Res. Not., no. 19 (2000), 1005–1042  crossref  mathscinet; math.QA/0002090
17. Terwilliger P., Vidunas R.,, “Leonard pairs and the Askey–Wilson relations”, J. Algebra Appl., 3 (2004), 411–426  crossref  mathscinet  zmath; math.QA/0305356  mathscinet
18. Zhedanov A. S., ““Hidden symmetry” of Askey–Wilson polynomials”, Theoret. and Math. Phys., 89:2 (1991), 1146–1157  mathnet  crossref  mathscinet  zmath  adsnasa  isi


© МИАН, 2025