RUS  ENG
Ïîëíàÿ âåðñèÿ
ÆÓÐÍÀËÛ // Symmetry, Integrability and Geometry: Methods and Applications

SIGMA, 2007, òîì 3, 069, 12 ñòð. (Mi sigma195)

Yangian of the Strange Lie Superalgebra of $Q_{n-1}$ Type, Drinfel'd Approach
Vladimir Stukopin

Ñïèñîê ëèòåðàòóðû

1. Drinfel'd V. G., “Quantum groups”, Proceedings of the International Congress of Mathematicians, Vol. 1, Berkley, 1988, 789–820  mathscinet
2. Drinfel'd V. G., “Hopf algebras and the quantum Yang–Baxter equation”, Soviet Math. Dokl., 32 (1985), 254–258  mathscinet
3. Drinfel'd V. G., “A new realization of Yangians and of quantum affine algebras”, Soviet Math. Dokl., 36 (1988), 212–216  mathscinet
4. Molev A., “Yangians and their applications”, Handbook of Algebra, Vol. 3, North-Holland, Amsterdam, 2003, 907–959  mathscinet; math.QA/0211288
5. Chari V., Pressley A., A guide to quantum groups, Camb. Univ. Press, Cambridge, 1995  mathscinet
6. Zhang R. B., “Representations of super Yangian”, J. Math. Phys., 36 (1995), 3854–3865  crossref  mathscinet  zmath  adsnasa  isi; hep-th/9411243
7. Zhang R. B., “The $\mathfrak{gl}(M,N)$ super Yangian and its finite-dimensional representations”, Lett. Math. Phys., 37 (1996), 419–434  crossref  mathscinet  zmath  adsnasa  isi; q-alg/9507029
8. Zhang Y.-Z., “Super-Yangian double and its central extension”, Phys. Lett. A, 234 (1997), 20–26  crossref  mathscinet  zmath  adsnasa  isi; q-alg/9703027
9. Crampe N., “Hopf structure of the Yangian $Y(sl_n)$ in the Drinfel'd realization”, J. Math. Phys., 45 (2004), 434–447  crossref  mathscinet  zmath  adsnasa  isi; math.QA/0304254  mathscinet
10. Stukopin V., “Yangians of Lie superalgebras of type $A(m,n)$”, Funct. Anal. Appl., 28:3 (1994), 217–219  mathnet  crossref  mathscinet  zmath  isi
11. Stukopin V., “Representation theory and doubles of Yangians of classical Lie superalgebras”, Asymptotic Combinatorics with Application to Mathematical Physics (2001, St. Petersburg), NATO Sci. Ser. II Math. Phys. Chem., 77, Kluwer Acad. Publ., Dordrecht, 2002, 255–265  mathscinet  zmath
12. Stukopin V., “Yangians of classical Lie superalgebras: basic constructions, quantum double and universal $R$-matrix”, Proceedings of Fourth International Conference “Symmetry in Nonlinear Mathematical Physics” (July 9–15, 2003, Kyiv), Proceedings of Institute of Mathematics, Kyiv, 50, no. 3, eds. A. G. Nikitin, V. M. Boyko, R. O. Popovych and I. A. Yehorchenko, 2004, 1196–1201  mathscinet
13. Stukopin V., Quantum double of Yangian of Lie superalgebra $A(m,n)$ and computation of universal $R$-matrix, math.QA/0504302
14. Nazarov M., “Quantum Berezinian and the classical Capelly identity”, Lett. Math. Phys., 21 (1991), 123–131  crossref  mathscinet  zmath  adsnasa  isi
15. Nazarov M., “Yangian of the queer Lie superalgebra”, Comm. Math. Phys., 208 (1999), 195–223  crossref  mathscinet  zmath  adsnasa  isi; math.QA/9902146
16. Kac V., “A sketch of Lie superalgebra theory”, Comm. Math. Phys., 53 (1977), 31–64  crossref  mathscinet  zmath  adsnasa
17. Frappat L., Sciarrino A., Sorba P., Dictionary on Lie superalgebras, Academic Press, Inc., San Diego, CA, 2000  mathscinet
18. Leites D., Serganova V., “Solutions of the classical Yang–Baxter equations for simple Lie superalgebras”, Theoret. and Math. Phys., 58:1 (1984), 16–24  mathnet  crossref  mathscinet  zmath  adsnasa  isi


© ÌÈÀÍ, 2025