RUS  ENG
Ïîëíàÿ âåðñèÿ
ÆÓÐÍÀËÛ // Symmetry, Integrability and Geometry: Methods and Applications

SIGMA, 2024, òîì 20, 029, 60 ñòð. (Mi sigma2031)

Reflection Vectors and Quantum Cohomology of Blowups
Todor Milanov, Xiaokun Xia

Ñïèñîê ëèòåðàòóðû

1. Arnold V.I., Gusein-Zade S.M., Varchenko A.N., Singularities of differentiable maps, v. II, Monog. Math., 82, Monodromy and asymptotics of integrals, Birkhäuser, Boston, MA, 2012  crossref  mathscinet
2. Bateman H., Erdélyi A., Higher transcendental functions, v. I, McGraw-Hill Book Co., Inc., New York, 1953  mathscinet
3. Bayer A., “Semisimple quantum cohomology and blowups”, Int. Math. Res. Not., 2004 (2004), 2069–2083, arXiv: math.AG/0403260  crossref  mathscinet  zmath
4. Behrend K., “Gromov–Witten invariants in algebraic geometry”, Invent. Math., 127 (1997), 601–617, arXiv: alg-geom/9601011  crossref  mathscinet  zmath
5. Behrend K., Fantechi B., “The intrinsic normal cone”, Invent. Math., 128 (1997), 45–88, arXiv: alg-geom/9601010  crossref  mathscinet  zmath
6. Behrend K., Manin Yu., “Stacks of stable maps and Gromov–Witten invariants”, Duke Math. J., 85 (1996), 1–60, arXiv: alg-geom/9506023  crossref  mathscinet  zmath
7. Cotti G., “Degenerate Riemann–Hilbert–Birkhoff problems, semisimplicity, and convergence of WDVV-potentials”, Lett. Math. Phys., 111 (2021), 99, 44 pp., arXiv: 2011.04498  crossref  mathscinet  zmath
8. Dixon A.L., Ferrar W.L., “A class of discontinuous integrals”, Quart. J. Math., 7 (1936), 81–96  crossref  mathscinet  zmath
9. Dubrovin B., “Geometry of $2$D topological field theories”, Integrable Systems and Quantum groups (Montecatini Terme, 1993), Lecture Notes in Math., 1620, Springer, Berlin, 1996, 120–348, arXiv: hep-th/9407018  crossref  mathscinet  zmath
10. Dubrovin B., “Geometry and analytic theory of Frobenius manifolds”, Doc. Math., 2 (1998), 315–326, arXiv: math.AG/9807034  mathscinet
11. Dubrovin B., “Painlevé transcendents in two-dimensional topological field theory”, The Painlevé Property, CRM Ser. Math. Phys., Springer, New York, 1999, 287–412, arXiv: math.AG/9803107  crossref  mathscinet  zmath
12. Dubrovin B., Zhang Y., Normal forms of hierarchies of integrable PDEs, Frobenius manifolds and Gromov–Witten invariants, arXiv: math.DG/0108160
13. Fomenko A., Fuchs D., Homotopical topology, Grad. Texts in Math., 273, 2nd ed., Springer, Cham, 2016  crossref  mathscinet  zmath
14. Frenkel E., Givental A., Milanov T., “Soliton equations, vertex operators, and simple singularities”, Funct. Anal. Other Math., 3 (2010), 47–63, arXiv: 0909.4032  crossref  mathscinet  zmath
15. Fulton W., Intersection theory, Ergeb. Math. Grenzgeb. (3), 2nd ed., Springer, Berlin, 1998  crossref  mathscinet  zmath
16. Galkin S., Golyshev V., Iritani H., “Gamma classes and quantum cohomology of Fano manifolds: Gamma conjectures”, Duke Math. J., 165 (2016), 2005–2077, arXiv: 1404.6407  crossref  mathscinet  zmath
17. Gathmann A., “Gromov–Witten invariants of blow-ups”, J. Algebraic Geom., 10 (2001), 399–432, arXiv: math.AG/9804043  mathscinet  zmath
18. Gelfand S.I., Manin Yu.I., Methods of homological algebra, Springer Monog. Math., 2nd ed., Springer, Berlin, 2003  crossref  mathscinet  zmath
19. Givental A., “$A_{n-1}$ singularities and $n$KdV hierarchies”, Mosc. Math. J., 3 (2003), 475–505, arXiv: math.AG/0209205  mathnet  crossref  mathscinet  zmath
20. Givental A.B., “Gromov–Witten invariants and quantization of quadratic Hamiltonians”, Mosc. Math. J., 1 (2001), 551–568, arXiv: math.AG/0108100  mathnet  crossref  mathscinet  zmath
21. Givental A.B., Milanov T.E., “Simple singularities and integrable hierarchies”, The Breadth of Symplectic and Poisson Geometry, Progr. Math., 232, Birkhäuser, Boston, MA, 2005, 173–201, arXiv: math.AG/0307176  crossref  mathscinet
22. Grauert H., Remmert R., Coherent analytic sheaves, Grundlehren Math. Wiss., 265, Springer, Berlin, 1984  crossref  mathscinet  zmath
23. Hertling C., Frobenius manifolds and moduli spaces for singularities, Cambridge Tracts in Math., 151, Cambridge University Press, Cambridge, 2002  crossref  mathscinet  zmath
24. Hertling C., Manin Yu.I., Teleman C., “An update on semisimple quantum cohomology and $F$-manifolds”, Proc. Steklov Inst. Math., 264 (2009), 62–69, arXiv: 0803.2769  mathnet  crossref  mathscinet  zmath
25. Iritani H., “An integral structure in quantum cohomology and mirror symmetry for toric orbifolds”, Adv. Math., 222 (2009), 1016–1079, arXiv: 0903.1463  crossref  mathscinet  zmath
26. Manin Yu.I., Frobenius manifolds, quantum cohomology, and moduli spaces, Amer. Math. Soc. Colloquium Publications, 47, American Mathematical Society, Providence, RI, 1999  crossref  mathscinet  zmath
27. Manin Yu.I., Merkulov S.A., “Semisimple Frobenius (super)manifolds and quantum cohomology of ${\mathbf P}^r$”, Topol. Methods Nonlinear Anal., 9 (1997), 107–161, arXiv: alg-geom/9702014  crossref  mathscinet  zmath
28. Milanov T., “The period map for quantum cohomology of $\mathbb{P}^2$”, Adv. Math., 351 (2019), 804–869, arXiv: 1706.04323  crossref  mathscinet  zmath
29. Milanov T., Saito K., Primitive forms and vertex operators, in preparation
30. Nori M.V., “Zariski's conjecture and related problems”, Ann. Sci. École Norm. Sup., 16 (1983), 305–344  crossref  mathscinet  zmath
31. Orlov D.O., “Projective bundles, monoidal transformations, and derived categories of coherent sheaves”, Russian Acad. Sci. Izv. Math., 41 (1993), 133–141  mathnet  crossref  mathscinet
32. Paris R.B., Kaminski D., Asymptotics and Mellin–Barnes integrals, Encyclopedia of Math. Appl., 85, Cambridge University Press, Cambridge, 2001  crossref  mathscinet  zmath
33. Saito K., “Period mapping associated to a primitive form”, Publ. Res. Inst. Math. Sci., 19 (1983), 1231–1264  crossref  mathscinet  zmath
34. Saito M., “On the structure of Brieskorn lattice”, Ann. Inst. Fourier (Grenoble), 39 (1989), 27–72  crossref  mathscinet  zmath
35. Shimada I., Lectures on Zariski Van-Kampen theorem http://www.math.sci.hiroshima-u.ac.jp/s̃himada/LectureNotes/LNZV.pdf


© ÌÈÀÍ, 2025