|
|
|
Ñïèñîê ëèòåðàòóðû
|
|
|
1. |
Arnold V.I., Gusein-Zade S.M., Varchenko A.N., Singularities of differentiable maps, v. II, Monog. Math., 82, Monodromy and asymptotics of integrals, Birkhäuser, Boston, MA, 2012 |
2. |
Bateman H., Erdélyi A., Higher transcendental functions, v. I, McGraw-Hill Book Co., Inc., New York, 1953 |
3. |
Bayer A., “Semisimple quantum cohomology and blowups”, Int. Math. Res. Not., 2004 (2004), 2069–2083, arXiv: math.AG/0403260 |
4. |
Behrend K., “Gromov–Witten invariants in algebraic geometry”, Invent. Math., 127 (1997), 601–617, arXiv: alg-geom/9601011 |
5. |
Behrend K., Fantechi B., “The intrinsic normal cone”, Invent. Math., 128 (1997), 45–88, arXiv: alg-geom/9601010 |
6. |
Behrend K., Manin Yu., “Stacks of stable maps and Gromov–Witten invariants”, Duke Math. J., 85 (1996), 1–60, arXiv: alg-geom/9506023 |
7. |
Cotti G., “Degenerate Riemann–Hilbert–Birkhoff problems, semisimplicity, and convergence of WDVV-potentials”, Lett. Math. Phys., 111 (2021), 99, 44 pp., arXiv: 2011.04498 |
8. |
Dixon A.L., Ferrar W.L., “A class of discontinuous integrals”, Quart. J. Math., 7 (1936), 81–96 |
9. |
Dubrovin B., “Geometry of $2$D topological field theories”, Integrable Systems and Quantum groups (Montecatini Terme, 1993), Lecture Notes in Math., 1620, Springer, Berlin, 1996, 120–348, arXiv: hep-th/9407018 |
10. |
Dubrovin B., “Geometry and analytic theory of Frobenius manifolds”, Doc. Math., 2 (1998), 315–326, arXiv: math.AG/9807034 |
11. |
Dubrovin B., “Painlevé transcendents in two-dimensional topological field theory”, The Painlevé Property, CRM Ser. Math. Phys., Springer, New York, 1999, 287–412, arXiv: math.AG/9803107 |
12. |
Dubrovin B., Zhang Y., Normal forms of hierarchies of integrable PDEs, Frobenius manifolds and Gromov–Witten invariants, arXiv: math.DG/0108160 |
13. |
Fomenko A., Fuchs D., Homotopical topology, Grad. Texts in Math., 273, 2nd ed., Springer, Cham, 2016 |
14. |
Frenkel E., Givental A., Milanov T., “Soliton equations, vertex operators, and simple singularities”, Funct. Anal. Other Math., 3 (2010), 47–63, arXiv: 0909.4032 |
15. |
Fulton W., Intersection theory, Ergeb. Math. Grenzgeb. (3), 2nd ed., Springer, Berlin, 1998 |
16. |
Galkin S., Golyshev V., Iritani H., “Gamma classes and quantum cohomology of Fano manifolds: Gamma conjectures”, Duke Math. J., 165 (2016), 2005–2077, arXiv: 1404.6407 |
17. |
Gathmann A., “Gromov–Witten invariants of blow-ups”, J. Algebraic Geom., 10 (2001), 399–432, arXiv: math.AG/9804043 |
18. |
Gelfand S.I., Manin Yu.I., Methods of homological algebra, Springer Monog. Math., 2nd ed., Springer, Berlin, 2003 |
19. |
Givental A., “$A_{n-1}$ singularities and $n$KdV hierarchies”, Mosc. Math. J., 3 (2003), 475–505, arXiv: math.AG/0209205 |
20. |
Givental A.B., “Gromov–Witten invariants and quantization of quadratic Hamiltonians”, Mosc. Math. J., 1 (2001), 551–568, arXiv: math.AG/0108100 |
21. |
Givental A.B., Milanov T.E., “Simple singularities and integrable hierarchies”, The Breadth of Symplectic and Poisson Geometry, Progr. Math., 232, Birkhäuser, Boston, MA, 2005, 173–201, arXiv: math.AG/0307176 |
22. |
Grauert H., Remmert R., Coherent analytic sheaves, Grundlehren Math. Wiss., 265, Springer, Berlin, 1984 |
23. |
Hertling C., Frobenius manifolds and moduli spaces for singularities, Cambridge Tracts in Math., 151, Cambridge University Press, Cambridge, 2002 |
24. |
Hertling C., Manin Yu.I., Teleman C., “An update on semisimple quantum cohomology and $F$-manifolds”, Proc. Steklov Inst. Math., 264 (2009), 62–69, arXiv: 0803.2769 |
25. |
Iritani H., “An integral structure in quantum cohomology and mirror symmetry for toric orbifolds”, Adv. Math., 222 (2009), 1016–1079, arXiv: 0903.1463 |
26. |
Manin Yu.I., Frobenius manifolds, quantum cohomology, and moduli spaces, Amer. Math. Soc. Colloquium Publications, 47, American Mathematical Society, Providence, RI, 1999 |
27. |
Manin Yu.I., Merkulov S.A., “Semisimple Frobenius (super)manifolds and quantum cohomology of ${\mathbf P}^r$”, Topol. Methods Nonlinear Anal., 9 (1997), 107–161, arXiv: alg-geom/9702014 |
28. |
Milanov T., “The period map for quantum cohomology of $\mathbb{P}^2$”, Adv. Math., 351 (2019), 804–869, arXiv: 1706.04323 |
29. |
Milanov T., Saito K., Primitive forms and vertex operators, in preparation |
30. |
Nori M.V., “Zariski's conjecture and related problems”, Ann. Sci. École Norm. Sup., 16 (1983), 305–344 |
31. |
Orlov D.O., “Projective bundles, monoidal transformations, and derived categories of coherent sheaves”, Russian Acad. Sci. Izv. Math., 41 (1993), 133–141 |
32. |
Paris R.B., Kaminski D., Asymptotics and Mellin–Barnes integrals, Encyclopedia of Math. Appl., 85, Cambridge University Press, Cambridge, 2001 |
33. |
Saito K., “Period mapping associated to a primitive form”, Publ. Res. Inst. Math. Sci., 19 (1983), 1231–1264 |
34. |
Saito M., “On the structure of Brieskorn lattice”, Ann. Inst. Fourier (Grenoble), 39 (1989), 27–72 |
35. |
Shimada I., Lectures on Zariski Van-Kampen theorem http://www.math.sci.hiroshima-u.ac.jp/s̃himada/LectureNotes/LNZV.pdf |