RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications

SIGMA, 2007, том 3, 107, 12 стр. (Mi sigma233)

Singular Potentials in Quantum Mechanics and Ambiguity in the Self-Adjoint Hamiltonian
Tamáas Fülöp

Список литературы

1. Gordeyev A. N., Chhajlany S. C., “One-dimensional hydrogen atom: a singular potential in quantum mechanics”, J. Phys. A: Math. Gen., 30 (1997), 6893–6909  crossref  mathscinet  zmath  adsnasa
2. Reed M., Simon B., Methods of modern mathematical physics I. Functional analysis, revised and enlarged edition, Academic Press, New York, 1980  mathscinet
3. Reed M., Simon B., Methods of modern mathematical physics II. Fourier analysis, self-adjointness, Academic Press, New York, 1975  mathscinet  zmath
4. Richtmyer R. D., Principles of advanced mathematical physics, Vol. I, Springer-Verlag, 1978  mathscinet  zmath
5. Akhiezer N. I., Glazman I. M., Theory of linear operators in Hilbert space, Pitman, New York, 1981  zmath
6. Gorbachuk V. I., Gorbachuk M. L., Boundary value problems for operator differential equations, Kluwer, 1991  mathscinet  zmath
7. Matolcsi T., Spacetime without reference frames, Akadémiai Kiadó, Budapest, 1993  mathscinet  zmath
8. Fülöp T., The physical role of boundary conditions in quantum mechanics, PhD dissertation, The University of Tokyo, Japan, 2006  zmath
9. Fülöp T., Cheon T., Tsutsui I., “Classical aspects of quantum walls in one dimension”, Phys. Rev. A, 66:5 (2002), 052102, 10 pp., ages  crossref  adsnasa  isi; quant-ph/0111057
10. Tsutsui I., Fülöp T., Cheon T., “Duality and anholonomy in the quantum mechanics of 1D contact interactions”, J. Phys. Soc. Japan, 69 (2000), 3473–3476  crossref  mathscinet  zmath  adsnasa  isi; quant-ph/0003069  mathscinet
11. Cheon T., Fülöp T., Tsutsui I., “Symmetry, duality and anholonomy of point interactions in one dimension”, Ann. Phys. (N.Y.), 294 (2001), 1–23  crossref  mathscinet  zmath  adsnasa  isi; quant-ph/0008123  mathscinet
12. Tsutsui I., Fülöp T., Cheon T., “Möbius structure of the spectral space of Schrödinger operators with point interaction”, J. Math. Phys., 42 (2001), 5687–5697  crossref  mathscinet  zmath  adsnasa  isi; quant-ph/0105066  mathscinet
13. Albeverio S., Gesztesy F., Høegh-Krohn R., Holden H., Solvable models in quantum mechanics, 2nd ed., with a remarkable Appendix written by P. Exner, AMS Chelsea Publishing, Providence, Rhode Island, 2005  mathscinet
14. Dittrich J., Exner P., “Tunneling through a singular potential barrier”, J. Math. Phys., 26 (1985), 2000–2008  crossref  mathscinet  zmath  adsnasa  isi
15. Fehér L., Fülöp T., Tsutsui I., “Inequivalent quantizations of the three-particle Calogero model constructed by separation of variables”, Nuclear Phys. B, 715 (2005), 713–757  crossref  mathscinet  zmath  adsnasa  isi; math-ph/0412095  mathscinet
16. Cheon T., Tsutsui I., Fülöp T., “Quantum abacus”, Phys. Lett. A, 330 (2004), 338–342  crossref  mathscinet  zmath  adsnasa  isi; quant-ph/0404039  mathscinet
17. Gitman D., Tyutin I., Voronov B., Self-adjoint extensions as a quantization problem, Progr. Math. Phys., Birkhäuser, Basel, 2006
18. Frank W. M., Land D. J., Spector R. M., “Singular potentials”, Rev. Modern Phys., 43 (1971), 36–98  crossref  mathscinet  adsnasa
19. Krall A. M., “Boundary values for an eigenvalue problem with a singular potential”, J. Differential Equations, 45 (1982), 128–138  crossref  mathscinet  zmath  isi
20. Esteve J. G., “Origin of the anomalies: The modified Heisenberg equation”, Phys. Rev. D, 66 (2002), 125013, 4 pp., ages  crossref  adsnasa  isi; hep-th/0207164
21. Coon S. A., Holstein B. R., “Anomalies in quantum mechanics: the $1/r^2$ potential”, Amer. J. Phys., 70 (2002), 513–519  crossref  mathscinet  isi; quant-ph/0202091  mathscinet
22. Essim A. M., Griffiths D. J., “Quantum mechanics of the $1/x^2$ potential”, Amer. J. Phys., 74 (2006), 109–117  crossref


© МИАН, 2025