|
|
|
Список литературы
|
|
|
1. |
Gordeyev A. N., Chhajlany S. C., “One-dimensional hydrogen atom: a singular potential in quantum
mechanics”, J. Phys. A: Math. Gen., 30 (1997), 6893–6909 |
2. |
Reed M., Simon B., Methods of modern mathematical physics I. Functional analysis,
revised and enlarged edition, Academic Press, New York, 1980 |
3. |
Reed M., Simon B., Methods of modern mathematical physics II. Fourier analysis,
self-adjointness, Academic Press, New York, 1975 |
4. |
Richtmyer R. D., Principles of advanced mathematical physics, Vol. I, Springer-Verlag, 1978 |
5. |
Akhiezer N. I., Glazman I. M., Theory of linear operators in Hilbert space, Pitman, New York, 1981 |
6. |
Gorbachuk V. I., Gorbachuk M. L., Boundary value problems for operator differential equations, Kluwer, 1991 |
7. |
Matolcsi T., Spacetime without reference frames, Akadémiai Kiadó, Budapest, 1993 |
8. |
Fülöp T., The physical role of boundary conditions in quantum mechanics, PhD dissertation, The University of Tokyo, Japan, 2006 |
9. |
Fülöp T., Cheon T., Tsutsui I., “Classical aspects of quantum walls in one dimension”, Phys. Rev. A, 66:5 (2002), 052102, 10 pp., ages ; quant-ph/0111057 |
10. |
Tsutsui I., Fülöp T., Cheon T., “Duality and anholonomy in the quantum mechanics of 1D contact
interactions”, J. Phys. Soc. Japan, 69 (2000), 3473–3476 ; quant-ph/0003069 |
11. |
Cheon T., Fülöp T., Tsutsui I., “Symmetry, duality and anholonomy of point interactions in one dimension”, Ann. Phys. (N.Y.), 294 (2001), 1–23 ; quant-ph/0008123 |
12. |
Tsutsui I., Fülöp T., Cheon T., “Möbius structure of the spectral space of Schrödinger operators
with point interaction”, J. Math. Phys., 42 (2001), 5687–5697 ; quant-ph/0105066 |
13. |
Albeverio S., Gesztesy F., Høegh-Krohn R., Holden H., Solvable models in quantum mechanics, 2nd ed., with a remarkable Appendix written by P. Exner, AMS Chelsea Publishing, Providence, Rhode Island, 2005 |
14. |
Dittrich J., Exner P., “Tunneling through a singular potential barrier”, J. Math. Phys., 26 (1985), 2000–2008 |
15. |
Fehér L., Fülöp T., Tsutsui I., “Inequivalent quantizations of the three-particle Calogero model
constructed by separation of variables”, Nuclear Phys. B, 715 (2005), 713–757 ; math-ph/0412095 |
16. |
Cheon T., Tsutsui I., Fülöp T., “Quantum abacus”, Phys. Lett. A, 330 (2004), 338–342 ; quant-ph/0404039 |
17. |
Gitman D., Tyutin I., Voronov B., Self-adjoint extensions as a quantization problem, Progr. Math. Phys., Birkhäuser, Basel, 2006 |
18. |
Frank W. M., Land D. J., Spector R. M., “Singular potentials”, Rev. Modern Phys., 43 (1971), 36–98 |
19. |
Krall A. M., “Boundary values for an eigenvalue problem with a singular potential”, J. Differential Equations, 45 (1982), 128–138 |
20. |
Esteve J. G., “Origin of the anomalies: The modified Heisenberg equation”, Phys. Rev. D, 66 (2002), 125013, 4 pp., ages ; hep-th/0207164 |
21. |
Coon S. A., Holstein B. R., “Anomalies in quantum mechanics: the $1/r^2$ potential”, Amer. J. Phys., 70 (2002), 513–519 ; quant-ph/0202091 |
22. |
Essim A. M., Griffiths D. J., “Quantum mechanics of the $1/x^2$ potential”, Amer. J. Phys., 74 (2006), 109–117 |