RUS  ENG
Ïîëíàÿ âåðñèÿ
ÆÓÐÍÀËÛ // Symmetry, Integrability and Geometry: Methods and Applications

SIGMA, 2013, òîì 9, 020, 11 ñòð. (Mi sigma803)

On a Seminal Paper by Karlin and McGregor
Mirta M. Castro, F. Alberto Grünbaum

Ñïèñîê ëèòåðàòóðû

1. Allaway W. R., “On finding the distribution function for an orthogonal polynomial set”, Pacific J. Math., 49 (1973), 305–310  crossref  mathscinet  zmath
2. Allaway W. R., The identification of a class of orthogonal polynomial sets, Ph. D. thesis, University of Alberta, Ann Arbor, MI, 1972  mathscinet
3. Anshelevich M., “Bochner–Pearson-type characterization of the free Meixner class”, Adv. in Appl. Math., 46 (2011), 25–45, arXiv: 0909.1097  crossref  mathscinet  zmath  isi
4. Anshelevich M., “Free martingale polynomials”, J. Funct. Anal., 201 (2003), 228–261, arXiv: math.CO/0112194  crossref  mathscinet  zmath  isi
5. Aptekarev A. I., “Asymptotic properties of polynomials orthogonal on a system of contours, and periodic moments of Toda lattices”, Math. USSR Sb., 53 (1986), 233–260  mathnet  crossref  zmath
6. Askey R., Wilson J., Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials, Mem. Amer. Math. Soc., 54, no. 319, 1985, iv+55 pp.  mathscinet
7. Chihara T. S., An introduction to orthogonal polynomials, Mathematics and its Applications, 13, Gordon and Breach Science Publishers, New York, 1978  mathscinet  zmath
8. Cohen J. M., Trenholme A. R., “Orthogonal polynomials with a constant recursion formula and an application to harmonic analysis”, J. Funct. Anal., 59 (1984), 175–184  crossref  mathscinet  zmath  isi
9. Damanik D., Killip R., Simon B., “Perturbations of orthogonal polynomials with periodic recursion coefficients”, Ann. of Math. (2), 171 (2010), 1931–2010, arXiv: math.SP/0702388  crossref  mathscinet  zmath
10. Dette H., Reuther B., Studden W. J., Zygmunt M., “Matrix measures and random walks with a block tridiagonal transition matrix”, SIAM J. Matrix Anal. Appl., 29 (2007), 117–142  crossref  mathscinet  isi
11. Feller W., An introduction to probability theory and its applications, v. 1, John Wiley & Sons, Inc., New York, 1967  mathscinet
12. Feller W., “On second order differential operators”, Ann. of Math. (2), 61 (1955), 90–105  crossref  mathscinet  zmath
13. Foster F. G., “On the stochastic matrices associated with certain queuing processes”, Ann. Math. Stat., 24 (1953), 355–360  crossref  mathscinet  zmath
14. Geronimus J. L., “On a set of polynomials”, Ann. of Math. (2), 31 (1930), 681–686  crossref  mathscinet  zmath
15. Geronimus J. L., “On some equations in finite differences and the corresponding systems of orthogonal polynomials”, Zap. Mat. Otdel. Fiz.-Mat. Fak. i Kharkov. Mat. Obshch., 25 (1957), 87–100 (in Russian)
16. Good I. J., “Random motion and analytic continued fractions”, Proc. Cambridge Philos. Soc., 54 (1958), 43–47  crossref  mathscinet  zmath  adsnasa
17. Grünbaum F. A., “Random walks and orthogonal polynomials: some challenges”, Probability, geometry and integrable systems, Math. Sci. Res. Inst. Publ., 55, Cambridge Univ. Press, Cambridge, 2008, 241–260, arXiv: math.PR/0703375  mathscinet
18. Harris T. E., “First passage and recurrence distributions”, Trans. Amer. Math. Soc., 73 (1952), 471–486  crossref  mathscinet  zmath
19. Hodges Jr. J. L., Rosenblatt M., “Recurrence-time moments in random walks”, Pacific J. Math., 3 (1953), 127–136  crossref  mathscinet  zmath
20. Ismail M. E. H., Masson D. R., Letessier J., Valent G., “Birth and death processes and orthogonal polynomials”, Orthogonal Polynomials (Columbus, OH, 1989), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 294, Kluwer Acad. Publ., Dordrecht, 1990, 229–255  mathscinet
21. Kac M., “Random walk and the theory of Brownian motion”, Amer. Math. Monthly, 54 (1947), 369–391  crossref  mathscinet  zmath
22. Karlin S., A first course in stochastic processes, Academic Press, New York, 1966  mathscinet
23. Karlin S., McGregor J., “Random walks”, Illinois J. Math., 3 (1959), 66–81  mathscinet  zmath
24. Ledermann W., Reuter G. E. H., “Spectral theory for the differential equations of simple birth and death processes”, Philos. Trans. Roy. Soc. London. Ser. A., 246 (1954), 321–369  crossref  mathscinet  zmath  adsnasa
25. McKean Jr. H. P., “Elementary solutions for certain parabolic partial differential equations”, Trans. Amer. Math. Soc., 82 (1956), 519–548  crossref  mathscinet  zmath
26. Saitoh N., Yoshida H., “The infinite divisibility and orthogonal polynomials with a constant recursion formula in free probability theory”, Probab. Math. Stat., 21 (2001), 159–170  mathscinet  zmath
27. Sodin S., “Random matrices, nonbacktracking walks, and orthogonal polynomials”, J. Math. Phys., 48 (2007), 123503, 21 pp., arXiv: math-ph/0703043  crossref  mathscinet  zmath  adsnasa  isi
28. Szeg{ö} G., Orthogonal polynomials, American Mathematical Society, Colloquium Publications, 23, 4th ed., Amer. Math. Soc., Providence, R.I., 1975
29. van Doorn E. A., Schrijner P., “Geometric ergodicity and quasi-stationarity in discrete-time birth-death processes”, J. Austral. Math. Soc. Ser. B, 37 (1995), 121–144  crossref  mathscinet  zmath
30. van Doorn E. A., Schrijner P., “Ratio limits and limiting conditional distributions for discrete-time birth-death processes”, J. Math. Anal. Appl., 190 (1995), 263–284  crossref  mathscinet  zmath  isi


© ÌÈÀÍ, 2025