|
|
|
Ñïèñîê ëèòåðàòóðû
|
|
|
1. |
Bernstein S., “Démonstration du théoréme de Weierstrass fondeé sur le calcul des probabilités”, Comm. Soc. Math. Kharkow, 13 (1912), 1–2 |
2. |
Dirac P. A. M., The principles of quantum mechanics, Clarendon Press, Oxford, 1947 |
3. |
Dixmier J., Les algèbres d'opérateurs dans l’espace hilbertien (algèbres de von Neumann), Gauthier-Villars, Paris, 1969 |
4. |
Graves L. M., The theory of functions of real variables, McGraw-Hill Book Company, Inc., New York–Toronto–London, 1956 |
5. |
Heisenberg W., The physical principles of the quantum theory, University of Chicago Press, Chicago, 1930 |
6. |
Hille E., Phillips R. S., Functional analysis and semi-groups, American Mathematical Society Colloquium Publications, 31, Amer. Math. Soc., Providence, R.I., 1957 |
7. |
Kadison R. V., “Transformations of states in operator theory and dynamics”, Topology, 3, suppl. 2 (1965), 177–198 |
8. |
Kadison R. V., “Algebras of unbounded functions and operators”, Exposition. Math., 4 (1986), 3–33 |
9. |
Kadison R. V., “Operator algebras — an overview”, The Legacy of {J}ohn von {N}eumann ({H}empstead, {NY}, 1988), Proc. Sympos. Pure Math., 50, Amer. Math. Soc., Providence, RI, 1990, 61–89 |
10. |
Kadison R. V., Ringrose J. R., Fundamentals of the theory of operator algebras, v. I, Pure and Applied Mathematics, 100, Elementary theory, Academic Press Inc., 1983 |
11. |
Kadison R. V., Ringrose J. R., Fundamentals of the theory of operator algebras, v. II, Pure and Applied Mathematics, 100, Advanced theory, Academic Press Inc., Orlando, FL, 1986 |
12. |
Kadison R. V., Ringrose J. R., Fundamentals of the theory of operator algebras, v. III, Elementary theory — an exercise approach, Birkhäuser Boston Inc., Boston, MA, 1991 |
13. |
Kadison R. V., Ringrose J. R., Fundamentals of the theory of operator algebras, v. IV, Advanced theory — an exercise approach, Birkhäuser Boston Inc., Boston, MA, 1992 |
14. |
Liu Z., “On some mathematical aspects of the {H}eisenberg relation”, Sci. China Math., 54 (2011), 2427–2452 |
15. |
Mackey G. W., “Quantum mechanics and {H}ilbert space”, Amer. Math. Monthly, 64 (1957), 45–57 |
16. |
Murray F. J., Von Neumann J., “On rings of operators”, Ann. of Math., 37 (1936), 116–229 |
17. |
Murray F. J., von Neumann J., “On rings of operators, II”, Trans. Amer. Math. Soc., 41 (1937), 208–248 |
18. |
Murray F. J., von Neumann J., “On rings of operators, IV”, Ann. of Math., 44 (1943), 716–808 |
19. |
Stein E. M., Shakarchi R., Real analysis. Measure theory, integration, and Hilbert spaces, Princeton Lectures in Analysis, III, Princeton University Press, Princeton, NJ, 2005 |
20. |
Stone M. H., “On one-parameter unitary groups in {H}ilbert space”, Ann. of Math., 33 (1932), 643–648 |
21. |
von Neumann J., “Zur {A}lgebra der {F}unktionaloperationen und {T}heorie der normalen {O}peratoren”, Math. Ann., 102 (1930), 370–427 |
22. |
von Neumann J., “Die {E}indeutigkeit der {S}chrödingerschen {O}peratoren”, Math. Ann., 104 (1931), 570–578 |
23. |
von Neumann J., “On rings of operators, III”, Ann. of Math., 41 (1940), 94–161 |
24. |
von Neumann J., Mathematical foundations of quantum mechanics, Princeton University Press, Princeton, 1955 |
25. |
Wielandt H., “Über die {U}nbeschränktheit der {O}peratoren der {Q}uantenmechanik”, Math. Ann., 121 (1949), 21–21 |
26. |
Wintner A., “The unboundedness of quantum-mechanical matrices”, Phys. Rev., 71 (1947), 738–739 |