|
|
|
Ñïèñîê ëèòåðàòóðû
|
|
|
1. |
Alexandrov S., Geiller M., Noui K., “Spin foams and canonical quantization”, SIGMA, 8 (2012), 055, 79 pp., arXiv: 1112.1961 |
2. |
Baez J. C., “An introduction to spin foam models of {$BF$} theory and quantum gravity”, Geometry and Quantum Physics ({S}chladming, 1999), Lecture Notes in Phys., 543, Springer, Berlin, 2000, 25–93, arXiv: gr-qc/9905087 |
3. |
Bahr B., Dittrich B., “({B}roken) gauge symmetries and constraints in {R}egge calculus”, Classical Quantum Gravity, 26 (2009), 225011, 34 pp., arXiv: 0905.1670 |
4. |
Baratin A., Dittrich B., Oriti D., Tambornino J., “Non-commutative flux representation for loop quantum gravity”, Classical Quantum Gravity, 28 (2011), 175011, 19 pp., arXiv: 1004.3450 |
5. |
Baratin A., Girelli F., Oriti D., “Diffeomorphisms in group field theories”, Phys. Rev. D, 83 (2011), 104051, 22 pp., arXiv: 1101.0590 |
6. |
Baratin A., Oriti D., “Group field theory with noncommutative metric variables”, Phys. Rev. Lett., 105 (2010), 221302, 4 pp., arXiv: 1002.4723 |
7. |
Baratin A., Oriti D., “Quantum simplicial geometry in the group field theory formalism: reconsidering the Barrett–Crane model”, New J. Phys., 13 (2011), 125011, 28 pp., arXiv: 1108.1178 |
8. |
Baratin A., Oriti D., “Group field theory and simplicial gravity path integrals: a model for Holst–Plebański gravity”, Phys. Rev. D, 85 (2012), 044003, 15 pp., arXiv: 1111.5842 |
9. |
Barrett J. W., Crane L., “Relativistic spin networks and quantum gravity”, J. Math. Phys., 39 (1998), 3296–3302, arXiv: gr-qc/9709028 |
10. |
Barrett J. W., Dowdall R. J., Fairbairn W. J., Hellmann F., Pereira R., “Lorentzian spin foam amplitudes: graphical calculus and asymptotics”, Classical Quantum Gravity, 27 (2010), 165009, 34 pp., arXiv: 0907.2440 |
11. |
Barrett J. W., Naish-Guzman I., “The Ponzano–Regge model”, Classical Quantum Gravity, 26 (2011), 155014, 48 pp., arXiv: 0803.3319 |
12. |
Boulatov D. V., “A model of three-dimensional lattice gravity”, Modern Phys. Lett. A, 7 (1992), 1629–1646, arXiv: hep-th/9202074 |
13. |
Caselle M., D'Adda A., Magnea L., “Regge calculus as a local theory of the {P}oincaré group”, Phys. Lett. B, 232 (1989), 457–461 |
14. |
Chaichian M., Demichev A., Path integrals in physics, v. I, Series in Mathematical and Computational Physics, Stochastic processes and quantum mechanics, Institute of Physics Publishing, Bristol, 2001 |
15. |
Conrady F., Freidel L., “Semiclassical limit of 4-dimensional spin foam models”, Phys. Rev. D, 78 (2008), 104023, 18 pp., arXiv: 0809.2280 |
16. |
Dittrich B., Guedes C., Oriti D., “On the space of generalized fluxes for loop quantum gravity”, Classical Quantum Gravity, 30 (2013), 055008, 24 pp., arXiv: 1205.6166 |
17. |
Dowdall R. J., Gomes H., Hellmann F., “Asymptotic analysis of the {P}onzano-{R}egge model for handlebodies”, J. Phys. A: Math. Theor., 43 (2010), 115203, 27 pp., arXiv: 0909.2027 |
18. |
Dupuis M., Girelli F., Livine E., “Spinors and {V}oros star-product for group field theory: first contact”, Phys. Rev. D, 86 (2012), 105034, 18 pp., arXiv: 1107.5693 |
19. |
Dupuis M., Livine E. R., “Holomorphic simplicity constraints for 4{D} spinfoam models”, Classical Quantum Gravity, 28 (2011), 215022, 32 pp., arXiv: 1104.3683 |
20. |
Engle J., Livine E., Pereira R., Rovelli C., “L{QG} vertex with finite {I}mmirzi parameter”, Nuclear Phys. B, 799 (2008), 136–149, arXiv: 0711.0146 |
21. |
Engle J., Pereira R., Rovelli C., “Loop-quantum-gravity vertex amplitude”, Phys. Rev. Lett., 99 (2007), 161301, 4 pp., arXiv: 0705.2388 |
22. |
Freidel L., “Group field theory: an overview”, Internat. J. Theoret. Phys., 44 (2005), 1769–1783, arXiv: hep-th/0505016 |
23. |
Freidel L., Krasnov K., “A new spin foam model for 4{D} gravity”, Classical Quantum Gravity, 25 (2008), 125018, 36 pp., arXiv: 0708.1595 |
24. |
Freidel L., Livine E. R., “3{D} quantum gravity and effective noncommutative quantum field theory”, Phys. Rev. Lett., 96 (2006), 221301, 4 pp., arXiv: hep-th/0512113 |
25. |
Freidel L., Majid S., “Noncommutative harmonic analysis, sampling theory and the {D}uflo map in {$2+1$} quantum gravity”, Classical Quantum Gravity, 25 (2008), 045006, 37 pp., arXiv: hep-th/0601004 |
26. |
Goldman W. M., “The symplectic nature of fundamental groups of surfaces”, Adv. Math., 54 (1984), 200–225 |
27. |
Guedes C., Oriti D., Raasakka M., “Quantization maps, algebra representation, and non-commutative {F}ourier transform for {L}ie groups”, J. Math. Phys., 54 (2013), 083508, 31 pp., arXiv: 1301.7750 |
28. |
Han M., “On spinfoam models in large spin regime”, Classical Quantum Gravity, 31 (2013), 015004, 21 pp., arXiv: 1304.5627 |
29. |
Han M., “Semiclassical analysis of spinfoam model with a small {B}arbero–{I}mmirzi parameter”, Phys. Rev. D, 88 (2013), 044051, 13 pp., arXiv: 1304.5628 |
30. |
Han M., Krajewski T., “Path integral representation of {L}orentzian spinfoam model, asymptotics and simplicial geometries”, Classical Quantum Gravity, 31 (2014), 015009, 34 pp., arXiv: 1304.5626 |
31. |
Han M., Zhang M., “Asymptotics of the spin foam amplitude on simplicial manifold: {E}uclidean theory”, Classical Quantum Gravity, 29 (2012), 165004, 40 pp., arXiv: 1109.0500 |
32. |
Han M., Zhang M., “Asymptotics of spinfoam amplitude on simplicial manifold: {L}orentzian theory”, Classical Quantum Gravity, 30 (2013), 165012, 57 pp., arXiv: 1109.0499 |
33. |
Hellmann F., Kamiński W., Geometric asymptotics for spin foam lattice gauge gravity on arbitrary triangulations, arXiv: 1210.5276 |
34. |
Hellmann F., Kamiński W., “Holonomy spin foam models: asymptotic geometry of the partition function”, J. High Energy Phys., 2013:10 (2013), 165, 63 pp., arXiv: 1307.1679 |
35. |
Joung E., Mourad J., Noui K., “Three dimensional quantum geometry and deformed symmetry”, J. Math. Phys., 50 (2009), 052503, 29 pp., arXiv: 0806.4121 |
36. |
Kamiński W., Steinhaus S., “Coherent states, {$6j$} symbols and properties of the next to leading order asymptotic expansions”, J. Math. Phys., 54 (2013), 121703, 58 pp., arXiv: 1307.5432 |
37. |
Kawamoto N., Nielsen H. B., “Lattice gauge gravity”, Phys. Rev. D, 43 (1991), 1150–1156 |
38. |
Magliaro E., Perini C., “Regge gravity from spinfoams”, Internat. J. Modern Phys. D, 22 (2013), 1350001, 21 pp., arXiv: 1105.0216 |
39. |
Majid S., Schroers B. J., “{$q$}-deformation and semidualization in 3{D} quantum gravity”, J. Phys. A: Math. Gen., 42 (2009), 425402, 40 pp., arXiv: 0806.2587 |
40. |
Mizoguchi S., Tada T., “Three-dimensional gravity from the {T}uraev–{V}iro invariant”, Phys. Rev. Lett., 68 (1992), 1795–1798, arXiv: hep-th/9110057 |
41. |
Noui K., Perez A., “Three-dimensional loop quantum gravity: physical scalar product and spin-foam models”, Classical Quantum Gravity, 22 (2005), 1739–1761, arXiv: gr-qc/0402110 |
42. |
Noui K., Perez A., Pranzetti D., “Canonical quantization of non-commutative holonomies in {$2+1$} loop quantum gravity”, J. High Energy Phys., 2011:10 (2011), 036, 21 pp., arXiv: 1105.0439 |
43. |
Noui K., Perez A., Pranzetti D., “Non-commutative holonomies in $2+1$ LQG and Kauffman's brackets”, J. Phys. Conf. Ser., 360 (2012), 012040, 4 pp., arXiv: 1112.1825 |
44. |
Oriti D., “The microscopic dynamics of quantum space as a group field theory”, Foundations of Space and Time: Reflections on Quantum Gravity, eds. J. Murugan, A. Weltman, G. Ellis, Cambridge University Press, Cambridge, 2012, 257–320, arXiv: 1110.5606 |
45. |
Oriti D., Raasakka M., “Quantum mechanics on {${\rm SO}(3)$} via non-commutative dual variables”, Phys. Rev. D, 84 (2011), 025003, 18 pp., arXiv: 1103.2098 |
46. |
Perelomov A., Generalized coherent states and their applications, Texts and Monographs in Physics, Springer-Verlag, Berlin, 1986 |
47. |
Perez A., “The new spin foam models and quantum gravity”, Papers Phys., 4 (2012), 040004, 37 pp., arXiv: 1205.0911 |
48. |
Perez A., “The spin foam approach to quantum gravity”, Living Rev. Relativ., 16 (2013), 3, 128 pp., arXiv: 1205.2019 |
49. |
Ponzano G., Regge T., “Semiclassical limit of Racah coefficients”, Spectroscopy and Group Theoretical Methods in Physics, ed. F. Block, North Holland, Amsterdam, 1968, 1–58 |
50. |
Pranzetti D., “Turaev–Viro amplitudes from $2+1$ loop quantum gravity”, Phys. Rev. D, 89 (2014), 084058, 14 pp., arXiv: 1402.2384 |
51. |
Regge T., Williams R. M., “Discrete structures in gravity,”, J. Math. Phys., 41 (2000), 3964–3984, arXiv: gr-qc/0012035 |
52. |
Reisenberger M. P., Rovelli C., ““{S}um over surfaces” form of loop quantum gravity”, Phys. Rev. D, 56 (1997), 3490–3508, arXiv: gr-qc/9612035 |
53. |
Reshetikhin N., Turaev V. G., “Invariants of {$3$}-manifolds via link polynomials and quantum groups”, Invent. Math., 103 (1991), 547–597 |
54. |
Rovelli C., “Basis of the {P}onzano–{R}egge–{T}uraev–{V}iro–{O}oguri quantum-gravity model is the loop representation basis”, Phys. Rev. D, 48 (1993), 2702–2707, arXiv: hep-th/9304164 |
55. |
Rovelli C., Quantum gravity, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 2004 |
56. |
Sahlmann H., Thiemann T., “Chern–{S}imons theory, {S}tokes' theorem, and the {D}uflo map”, J. Geom. Phys., 61 (2011), 1104–1121, arXiv: 1101.1690 |
57. |
Sahlmann H., Thiemann T., “Chern–Simons expectation values and quantum horizons from loop quantum gravity and the Duflo map”, Phys. Rev. Lett., 108 (2012), 111303, 5 pp., arXiv: 1109.5793 |
58. |
Schroers B. J., “Combinatorial quantization of {E}uclidean gravity in three dimensions”, Quantization of Singular Symplectic Quotients, Progr. Math., 198, eds. N. Landsman, M. Pflaum, M. Schlichenmaier, Birkhäuser, Basel, 2001, 307–327, arXiv: math.QA/0006228 |
59. |
Sengupta A. N., “The volume measure for flat connections as limit of the {Y}ang–{M}ills measure”, J. Geom. Phys., 47 (2003), 398–426 |
60. |
Thiemann T., Modern canonical quantum general relativity, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 2007 |
61. |
Turaev V. G., Viro O. Y., “State sum invariants of {$3$}-manifolds and quantum {$6j$}-symbols”, Topology, 31 (1992), 865–902 |
62. |
Witten E., “Quantum field theory and the {J}ones polynomial”, Comm. Math. Phys., 121 (1989), 351–399 |
63. |
Witten E., “On quantum gauge theories in two dimensions”, Comm. Math. Phys., 141 (1991), 153–209 |