RUS  ENG
Ïîëíàÿ âåðñèÿ
ÆÓÐÍÀËÛ // Symmetry, Integrability and Geometry: Methods and Applications

SIGMA, 2014, òîì 10, 067, 32 ñòð. (Mi sigma932)

Asymptotic Analysis of the Ponzano–Regge Model with Non-Commutative Metric Boundary Data
Daniele Oriti, Matti Raasakka

Ñïèñîê ëèòåðàòóðû

1. Alexandrov S., Geiller M., Noui K., “Spin foams and canonical quantization”, SIGMA, 8 (2012), 055, 79 pp., arXiv: 1112.1961  mathnet  crossref  mathscinet  zmath  isi
2. Baez J. C., “An introduction to spin foam models of {$BF$} theory and quantum gravity”, Geometry and Quantum Physics ({S}chladming, 1999), Lecture Notes in Phys., 543, Springer, Berlin, 2000, 25–93, arXiv: gr-qc/9905087  crossref  mathscinet
3. Bahr B., Dittrich B., “({B}roken) gauge symmetries and constraints in {R}egge calculus”, Classical Quantum Gravity, 26 (2009), 225011, 34 pp., arXiv: 0905.1670  crossref  mathscinet  zmath  adsnasa  isi
4. Baratin A., Dittrich B., Oriti D., Tambornino J., “Non-commutative flux representation for loop quantum gravity”, Classical Quantum Gravity, 28 (2011), 175011, 19 pp., arXiv: 1004.3450  crossref  mathscinet  zmath  adsnasa  isi
5. Baratin A., Girelli F., Oriti D., “Diffeomorphisms in group field theories”, Phys. Rev. D, 83 (2011), 104051, 22 pp., arXiv: 1101.0590  crossref  adsnasa  isi
6. Baratin A., Oriti D., “Group field theory with noncommutative metric variables”, Phys. Rev. Lett., 105 (2010), 221302, 4 pp., arXiv: 1002.4723  crossref  mathscinet  adsnasa  isi
7. Baratin A., Oriti D., “Quantum simplicial geometry in the group field theory formalism: reconsidering the Barrett–Crane model”, New J. Phys., 13 (2011), 125011, 28 pp., arXiv: 1108.1178  crossref  isi
8. Baratin A., Oriti D., “Group field theory and simplicial gravity path integrals: a model for Holst–Plebański gravity”, Phys. Rev. D, 85 (2012), 044003, 15 pp., arXiv: 1111.5842  crossref  adsnasa  isi
9. Barrett J. W., Crane L., “Relativistic spin networks and quantum gravity”, J. Math. Phys., 39 (1998), 3296–3302, arXiv: gr-qc/9709028  crossref  mathscinet  zmath  adsnasa  isi
10. Barrett J. W., Dowdall R. J., Fairbairn W. J., Hellmann F., Pereira R., “Lorentzian spin foam amplitudes: graphical calculus and asymptotics”, Classical Quantum Gravity, 27 (2010), 165009, 34 pp., arXiv: 0907.2440  crossref  mathscinet  zmath  adsnasa  isi
11. Barrett J. W., Naish-Guzman I., “The Ponzano–Regge model”, Classical Quantum Gravity, 26 (2011), 155014, 48 pp., arXiv: 0803.3319  crossref  adsnasa  isi
12. Boulatov D. V., “A model of three-dimensional lattice gravity”, Modern Phys. Lett. A, 7 (1992), 1629–1646, arXiv: hep-th/9202074  crossref  mathscinet  zmath  adsnasa  isi
13. Caselle M., D'Adda A., Magnea L., “Regge calculus as a local theory of the {P}oincaré group”, Phys. Lett. B, 232 (1989), 457–461  crossref  mathscinet  adsnasa  isi
14. Chaichian M., Demichev A., Path integrals in physics, v. I, Series in Mathematical and Computational Physics, Stochastic processes and quantum mechanics, Institute of Physics Publishing, Bristol, 2001  mathscinet  zmath
15. Conrady F., Freidel L., “Semiclassical limit of 4-dimensional spin foam models”, Phys. Rev. D, 78 (2008), 104023, 18 pp., arXiv: 0809.2280  crossref  mathscinet  adsnasa  isi
16. Dittrich B., Guedes C., Oriti D., “On the space of generalized fluxes for loop quantum gravity”, Classical Quantum Gravity, 30 (2013), 055008, 24 pp., arXiv: 1205.6166  crossref  mathscinet  zmath  adsnasa  isi
17. Dowdall R. J., Gomes H., Hellmann F., “Asymptotic analysis of the {P}onzano-{R}egge model for handlebodies”, J. Phys. A: Math. Theor., 43 (2010), 115203, 27 pp., arXiv: 0909.2027  crossref  mathscinet  zmath  adsnasa  isi
18. Dupuis M., Girelli F., Livine E., “Spinors and {V}oros star-product for group field theory: first contact”, Phys. Rev. D, 86 (2012), 105034, 18 pp., arXiv: 1107.5693  crossref  adsnasa  isi
19. Dupuis M., Livine E. R., “Holomorphic simplicity constraints for 4{D} spinfoam models”, Classical Quantum Gravity, 28 (2011), 215022, 32 pp., arXiv: 1104.3683  crossref  mathscinet  zmath  adsnasa  isi
20. Engle J., Livine E., Pereira R., Rovelli C., “L{QG} vertex with finite {I}mmirzi parameter”, Nuclear Phys. B, 799 (2008), 136–149, arXiv: 0711.0146  crossref  mathscinet  zmath  adsnasa  isi
21. Engle J., Pereira R., Rovelli C., “Loop-quantum-gravity vertex amplitude”, Phys. Rev. Lett., 99 (2007), 161301, 4 pp., arXiv: 0705.2388  crossref  mathscinet  zmath  adsnasa  isi
22. Freidel L., “Group field theory: an overview”, Internat. J. Theoret. Phys., 44 (2005), 1769–1783, arXiv: hep-th/0505016  crossref  mathscinet  zmath  adsnasa  isi
23. Freidel L., Krasnov K., “A new spin foam model for 4{D} gravity”, Classical Quantum Gravity, 25 (2008), 125018, 36 pp., arXiv: 0708.1595  crossref  mathscinet  zmath  adsnasa  isi
24. Freidel L., Livine E. R., “3{D} quantum gravity and effective noncommutative quantum field theory”, Phys. Rev. Lett., 96 (2006), 221301, 4 pp., arXiv: hep-th/0512113  crossref  mathscinet  zmath  adsnasa  isi
25. Freidel L., Majid S., “Noncommutative harmonic analysis, sampling theory and the {D}uflo map in {$2+1$} quantum gravity”, Classical Quantum Gravity, 25 (2008), 045006, 37 pp., arXiv: hep-th/0601004  crossref  mathscinet  zmath  adsnasa  isi
26. Goldman W. M., “The symplectic nature of fundamental groups of surfaces”, Adv. Math., 54 (1984), 200–225  crossref  mathscinet  zmath  isi
27. Guedes C., Oriti D., Raasakka M., “Quantization maps, algebra representation, and non-commutative {F}ourier transform for {L}ie groups”, J. Math. Phys., 54 (2013), 083508, 31 pp., arXiv: 1301.7750  crossref  mathscinet  zmath  adsnasa  isi
28. Han M., “On spinfoam models in large spin regime”, Classical Quantum Gravity, 31 (2013), 015004, 21 pp., arXiv: 1304.5627  crossref  adsnasa  isi
29. Han M., “Semiclassical analysis of spinfoam model with a small {B}arbero–{I}mmirzi parameter”, Phys. Rev. D, 88 (2013), 044051, 13 pp., arXiv: 1304.5628  crossref  adsnasa  isi
30. Han M., Krajewski T., “Path integral representation of {L}orentzian spinfoam model, asymptotics and simplicial geometries”, Classical Quantum Gravity, 31 (2014), 015009, 34 pp., arXiv: 1304.5626  crossref  mathscinet  zmath  adsnasa  isi
31. Han M., Zhang M., “Asymptotics of the spin foam amplitude on simplicial manifold: {E}uclidean theory”, Classical Quantum Gravity, 29 (2012), 165004, 40 pp., arXiv: 1109.0500  crossref  mathscinet  zmath  adsnasa  isi
32. Han M., Zhang M., “Asymptotics of spinfoam amplitude on simplicial manifold: {L}orentzian theory”, Classical Quantum Gravity, 30 (2013), 165012, 57 pp., arXiv: 1109.0499  crossref  mathscinet  zmath  adsnasa  isi
33. Hellmann F., Kamiński W., Geometric asymptotics for spin foam lattice gauge gravity on arbitrary triangulations, arXiv: 1210.5276
34. Hellmann F., Kamiński W., “Holonomy spin foam models: asymptotic geometry of the partition function”, J. High Energy Phys., 2013:10 (2013), 165, 63 pp., arXiv: 1307.1679  crossref  adsnasa  isi
35. Joung E., Mourad J., Noui K., “Three dimensional quantum geometry and deformed symmetry”, J. Math. Phys., 50 (2009), 052503, 29 pp., arXiv: 0806.4121  crossref  mathscinet  zmath  adsnasa  isi
36. Kamiński W., Steinhaus S., “Coherent states, {$6j$} symbols and properties of the next to leading order asymptotic expansions”, J. Math. Phys., 54 (2013), 121703, 58 pp., arXiv: 1307.5432  crossref  mathscinet  zmath  adsnasa  isi
37. Kawamoto N., Nielsen H. B., “Lattice gauge gravity”, Phys. Rev. D, 43 (1991), 1150–1156  crossref  mathscinet  adsnasa  isi
38. Magliaro E., Perini C., “Regge gravity from spinfoams”, Internat. J. Modern Phys. D, 22 (2013), 1350001, 21 pp., arXiv: 1105.0216  crossref  mathscinet  zmath  adsnasa  isi
39. Majid S., Schroers B. J., “{$q$}-deformation and semidualization in 3{D} quantum gravity”, J. Phys. A: Math. Gen., 42 (2009), 425402, 40 pp., arXiv: 0806.2587  crossref  mathscinet  zmath  adsnasa  isi
40. Mizoguchi S., Tada T., “Three-dimensional gravity from the {T}uraev–{V}iro invariant”, Phys. Rev. Lett., 68 (1992), 1795–1798, arXiv: hep-th/9110057  crossref  mathscinet  zmath  adsnasa  isi
41. Noui K., Perez A., “Three-dimensional loop quantum gravity: physical scalar product and spin-foam models”, Classical Quantum Gravity, 22 (2005), 1739–1761, arXiv: gr-qc/0402110  crossref  mathscinet  zmath  adsnasa  isi
42. Noui K., Perez A., Pranzetti D., “Canonical quantization of non-commutative holonomies in {$2+1$} loop quantum gravity”, J. High Energy Phys., 2011:10 (2011), 036, 21 pp., arXiv: 1105.0439  crossref  mathscinet  isi
43. Noui K., Perez A., Pranzetti D., “Non-commutative holonomies in $2+1$ LQG and Kauffman's brackets”, J. Phys. Conf. Ser., 360 (2012), 012040, 4 pp., arXiv: 1112.1825  crossref  adsnasa  isi
44. Oriti D., “The microscopic dynamics of quantum space as a group field theory”, Foundations of Space and Time: Reflections on Quantum Gravity, eds. J. Murugan, A. Weltman, G. Ellis, Cambridge University Press, Cambridge, 2012, 257–320, arXiv: 1110.5606  crossref  mathscinet  zmath
45. Oriti D., Raasakka M., “Quantum mechanics on {${\rm SO}(3)$} via non-commutative dual variables”, Phys. Rev. D, 84 (2011), 025003, 18 pp., arXiv: 1103.2098  crossref  adsnasa  isi
46. Perelomov A., Generalized coherent states and their applications, Texts and Monographs in Physics, Springer-Verlag, Berlin, 1986  crossref  mathscinet  zmath
47. Perez A., “The new spin foam models and quantum gravity”, Papers Phys., 4 (2012), 040004, 37 pp., arXiv: 1205.0911  crossref  mathscinet
48. Perez A., “The spin foam approach to quantum gravity”, Living Rev. Relativ., 16 (2013), 3, 128 pp., arXiv: 1205.2019  crossref  adsnasa
49. Ponzano G., Regge T., “Semiclassical limit of Racah coefficients”, Spectroscopy and Group Theoretical Methods in Physics, ed. F. Block, North Holland, Amsterdam, 1968, 1–58  adsnasa
50. Pranzetti D., “Turaev–Viro amplitudes from $2+1$ loop quantum gravity”, Phys. Rev. D, 89 (2014), 084058, 14 pp., arXiv: 1402.2384  crossref  adsnasa  isi
51. Regge T., Williams R. M., “Discrete structures in gravity,”, J. Math. Phys., 41 (2000), 3964–3984, arXiv: gr-qc/0012035  crossref  mathscinet  zmath  adsnasa  isi
52. Reisenberger M. P., Rovelli C., ““{S}um over surfaces” form of loop quantum gravity”, Phys. Rev. D, 56 (1997), 3490–3508, arXiv: gr-qc/9612035  crossref  mathscinet  adsnasa  isi
53. Reshetikhin N., Turaev V. G., “Invariants of {$3$}-manifolds via link polynomials and quantum groups”, Invent. Math., 103 (1991), 547–597  crossref  mathscinet  zmath  adsnasa  isi
54. Rovelli C., “Basis of the {P}onzano–{R}egge–{T}uraev–{V}iro–{O}oguri quantum-gravity model is the loop representation basis”, Phys. Rev. D, 48 (1993), 2702–2707, arXiv: hep-th/9304164  crossref  mathscinet  adsnasa  isi
55. Rovelli C., Quantum gravity, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 2004  crossref  mathscinet  zmath
56. Sahlmann H., Thiemann T., “Chern–{S}imons theory, {S}tokes' theorem, and the {D}uflo map”, J. Geom. Phys., 61 (2011), 1104–1121, arXiv: 1101.1690  crossref  mathscinet  zmath  adsnasa  isi
57. Sahlmann H., Thiemann T., “Chern–Simons expectation values and quantum horizons from loop quantum gravity and the Duflo map”, Phys. Rev. Lett., 108 (2012), 111303, 5 pp., arXiv: 1109.5793  crossref  mathscinet  adsnasa  isi
58. Schroers B. J., “Combinatorial quantization of {E}uclidean gravity in three dimensions”, Quantization of Singular Symplectic Quotients, Progr. Math., 198, eds. N. Landsman, M. Pflaum, M. Schlichenmaier, Birkhäuser, Basel, 2001, 307–327, arXiv: math.QA/0006228  mathscinet  zmath  adsnasa
59. Sengupta A. N., “The volume measure for flat connections as limit of the {Y}ang–{M}ills measure”, J. Geom. Phys., 47 (2003), 398–426  crossref  mathscinet  zmath  adsnasa  isi
60. Thiemann T., Modern canonical quantum general relativity, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 2007  crossref  mathscinet  zmath  adsnasa
61. Turaev V. G., Viro O. Y., “State sum invariants of {$3$}-manifolds and quantum {$6j$}-symbols”, Topology, 31 (1992), 865–902  crossref  mathscinet  zmath  isi
62. Witten E., “Quantum field theory and the {J}ones polynomial”, Comm. Math. Phys., 121 (1989), 351–399  crossref  mathscinet  zmath  adsnasa  isi
63. Witten E., “On quantum gauge theories in two dimensions”, Comm. Math. Phys., 141 (1991), 153–209  crossref  mathscinet  zmath  adsnasa  isi


© ÌÈÀÍ, 2025