RUS  ENG
Full version
JOURNALS // Sibirskii Zhurnal Industrial'noi Matematiki

Sib. Zh. Ind. Mat., 2020, Volume 23, Number 1, Pages 70–83 (Mi sjim1078)

Detection of the corner structures in images by scalable masks
I. G. Kazantsev, B. O. Mukhametzhanova, K. T. Iskakov, T. Mirgalikyzy

References

1. R. C. Gonzalez, R. E. Woods, Digital Image Processing, Tekhnosfera, M., 2006 (in Russian)
2. P. A. Bakut, G. S. Kolmogorov, I. E. Vornovitskii, “Image segmentation: methods of threshold processing”, Zarubezh. Radioelektronika, 1987, no. 10, 6–24 (in Russian)  mathscinet
3. B. A. Alpatov, P. V. Babayan, O. E. Balashov, A. I. Stepashkin, Methods for Autodetection and Maintenance of Objects. Image Processing and Control, Radiotekhnika, M., 2008 (in Russian)
4. A. Dutta, A. Kar, B. N. Chatterji, “Corner detection algorithms for digital images in last three decades”, Institution of Electronics and Telecommunication Engineers Technical Review, 25:3 (2008), 123–133
5. J. Chen, L. Zou, J. Zhang, L. Dou, “The comparison and application of corner detection algorithms”, J. Multimedia, 4:6 (2009), 435–441  crossref
6. A. N. Kozlovskii, “Corner point detector based on approximation of contours of image objects”, Informatika, 28:4 (2010), 36–47 (in Russian)
7. D. I. Borisenko, “Methods of corner peculiar properties retrieval in images”, Molodoi Uchenyi, 1:5 (2011), 120–123 (in Russian)
8. I. Golightly, D. Jones, “Corner detection and matching for visual tracking during power line inspection”, Image and Vision Computing, 21 (2003), 827–840  crossref
9. X. Gao, F. Sattar, R. Venkateswarlu, “Multiscale corner detection of gray level images based on loggabor wavelet transform”, IEEE Transactions on Circuits and Systems for Video Technology, 17:7 (2007), 868–875  crossref
10. E. Rosten, R. Porte, T. Drummond, “Faster and Better: A machine learning approach to corner detection”, IEEE Trans. Pattern Analysis and Machine Intelligence, 32:1 (2010), 105–119  crossref
11. J. Sharpnack, “Learning patterns for detection with multiscale scan statistics”, Proc. Machine Learning Research, 75 (2018), 950–969
12. B. H. Shekar, K. P. Uma, “Kirsch directional derivatives based shot boundary detection: an efficient and accurate method”, Procedia Computer Sci., 58 (2015), 565–571  crossref
13. M. Pietikainen, G. Zhao, “Two decades of local binary patterns: A survey”, Advances in Independent Component Analysis and Learning Machines, Chapter 9, Elsevier, 2015, 175–210  crossref
14. W. Peng, X. Hongling, L. Wenlin, S. Wenlong, “Harris scale invariant corner detection algorithm based on the significant region”, Internat. J. Signal Processing, Image Processing and Pattern Recognition, 9:3 (2016), 413–420  crossref
15. A. R. Rivera, J. R. Castillo, O. Chae, “Local directional number pattern for face analysis: face and expression recognition”, IEEE Trans. Image Processing, 22:5 (2013), 1740–1752  crossref  mathscinet  zmath
16. A. Buades, R. Grompone von Gioi, J. Navarro, “Joint contours, corner and T-junction detection: An approach inspired by the mammal visual system”, J. Math. Imaging and Vision, 60 (2018), 341–354  crossref  mathscinet  zmath
17. H. Liu, S. Tan, “Image regularizations based on the sparsity of corner points”, IEEE Trans. Image Processing, 28:1 (2019), 72–87  crossref  mathscinet  zmath
18. I. G. Kazantsev, “On a corner points detector in images”, Proceedings of 14th International Scientific Congress “INTEREKSPO GEO-SIBIR'-2018”, v. 1, Methods of Earth Remote Monitoring and Terrestrial Photogrammetry, Monitoring of Environment, and Geoecology, Publ. SGUGiT, Novosibirsk, 2018, 89–93
19. P. A. Chochia, “A pyramidal algorithm of image segmentation”, Informatsionnye protsessy, 10:1 (2010), 23–35 (in Russian)  mathscinet  elib
20. A. N. Shiryaev, Stochastic Problems of Disorder, Publ. MTsNMO, M., 2016 (in Russian)
21. A. A. Borovkov, “On estimation of parameters in the case of discontinuous densities”, Theory Probab. Appl., 63:2 (2018), 169–192  mathnet  crossref  crossref  mathscinet  zmath


© Steklov Math. Inst. of RAS, 2025