RUS  ENG
Full version
JOURNALS // Sibirskii Zhurnal Industrial'noi Matematiki

Sib. Zh. Ind. Mat., 2022, Volume 25, Number 1, Pages 105–120 (Mi sjim1165)

Equilibrium of a three-layer plate with crack
E. V. Pyatkina

References

1. V. V. Bolotin, Yu. N. Novichkov, Mechanics of multilayered structures, Mashinostroenie, M., 1980 (in Russian)
2. E. Reissner, Inst. Aeron. Sci. A symposium, Preprint № 165, 1948, 21–48  mathscinet
3. E. I. Grigolyuk, “Equation of three-layered shells with lightweight intermediate layer”, Bull. AN USSR. Division of Technical Sci., 1957, no. 1, 77–84 (in Russian)  zmath
4. E. I. Grigolyuk, P. P. Chulkov, “On the general theory of three-layer shells with a big deflection”, Dokl. Acad. Nauk SSSR, 150:5 (1963), 1012–1014  mathnet
5. E. I. Grigolyuk, G. M. Kulikov, “Generalized model of mechanics of composite material thin-shell structures”, Mech. Composite Mater., 1988, no. 4, 698–704 (in Russian)
6. V. I. Korolev, Elasto-plastic deformation of shells, Mashinostroenie, M., 1971 (in Russian)
7. Yu. I. Dimitrienko, “Asymptotic theory of multylayer thin plates”, Vestn. Moskov. Univ. im. Baumana, Ser. Estestv. Nauki, 2012, no. 3, 86–99 (in Russian)
8. Yu. I. Dimitrienko, E. A. Gubareva, Yu. V. Yurin, “Variational equations of asymptotic theory of multylayer thin plates”, Vestn. Moskov. Univ. im. Baumana, Ser. Estestv. Nauki, 2015, no. 4, 67–87 (in Russian)
9. E. I. Grigolyuk, G. M. Kulikov, “Development of the theory of elastic multilayered plates and shells”, Vestn. TSTU, 11 (2005), 439–448 (in Russian)
10. A. R. Rzanitsyn, Built-up bars and plates, Stroiizdat, M., 1986 (in Russian)
11. A. M. Khludnev, “On the contact of two plates, one of which contains a crack”, J. Appl. Math. Mech., 61:5 (1997), 851–862  crossref  mathscinet  zmath
12. A. M. Khludnev, V. A. Kovtunenko, Analysis of Cracks in Solids, WIT Press, Southampton–Boston, 2000
13. E. M. Rudoy, “Differentiation of energy functionals in two-dimensional elasticity theory for solids with curvilinear cracks”, J. Appl. Mech. Tech. Phys., 45:6 (2004), 843–852  crossref  mathscinet  zmath  adsnasa
14. A. M. Khludnev, Elasticity theory problems in nonsmooth domains, Fizmatlit, M., 2010
15. N. P. Lazarev, “The problem of equilibrium of a Timoshenko-type plate containing a through-thickness crack”, J. Appl. Industr. Math., 14:4 (2011), 32–43  mathnet  mathscinet  zmath
16. V. V. Shcherbakov, “On an optimal control problem of thin inclusions shapes in elastic bodies”, J. Appl. Industr. Math., 7:3 (2013), 435–443  mathnet  crossref  mathscinet  zmath  elib
17. E. M. Rudoy, N. A. Kazarinov, V. Yu. Slesarenko, “Numerical simulation of the equilibrium of an elastic two-layer structure with a crack”, Numer. Analys. Appl., 10:1 (2017), 63–73  mathnet  crossref  mathscinet  elib
18. Y. Beneveniste, T. Miloh, “Imperfect soft and stiff interfaces in two-dimensional elasticity”, Mech. of Materials, 33 (2001), 309–323  crossref
19. A. M. Khludnev, “On modelling elastic bodies with defects”, Sib. Electr. Math. Rep., 15 (2018), 153–166  mathnet  mathscinet  zmath
20. I. V. Fankina, “On the equilibrium of a two-layer elastic structure with a crack”, J. Appl. Industr. Math., 13:4 (2019), 629–641  mathnet  crossref  mathscinet  mathscinet
21. I. V. Fankina, “On the equilibrium problem for a two-layer structure with the upper layer covering a defect tip”, Sib. Electr. Math. Rep., 17 (2020), 141–160  mathnet  mathscinet  zmath
22. E. Rudoy, “Asymptotic modelling of bonded plates by a soft thin adhesive layer”, Sib. Electr. Math. Rep., 17 (2020), 615–625  mathnet  mathscinet  zmath
23. A. Furtsev, E. Rudoy, “Variational approach to modelling soft and stiff interfaces in the Kirchoff-Love theory of plates”, Int. J. Solids Structures, 202 (2020), 562–574  crossref


© Steklov Math. Inst. of RAS, 2025