RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik

Mat. Sb., 2024, Volume 215, Number 11, Pages 92–121 (Mi sm10096)

Saddle connections
A. V. Dukov

References

1. A. A. Andronov, E. A. Leontovich, “Generation of limit cycles from a separatrix forming a loop and from the separatrix of an equilibrium state of saddle-node type”, Amer. Math. Soc. Transl. Ser. 2, 33, Amer. Math. Soc., Providence, RI, 1963, 189–231  mathnet  crossref  mathscinet  zmath
2. R. Abraham, J. Robbin, Transversal mappings and flows, W. A. Benjamin, Inc., New York–Amsterdam, 1967, x+161 pp.  mathscinet  zmath
3. L. A. Cherkas, “The stability of singular cycles”, Differ. Equ., 4 (1972), 524–526  mathnet  mathscinet  zmath
4. A. V. Dukov, Tipichnye konechno-parametricheskie semeistva vektornykh polei na dvumernoi sfere, Diss. $\dots$ kand. fiz.-matem. nauk, MGU, M., 2023, 84 pp.
5. A. V. Dukov, “Bifurcations of the ‘heart’ polycycle in generic 2-parameter families”, Trans. Moscow Math. Soc., 2018, 209–229  mathnet  crossref  mathscinet  zmath
6. A. Dukov, Y. Ilyashenko, “Numeric invariants in semilocal bifurcations”, J. Fixed Point Theory Appl., 23:1 (2021), 3, 15 pp.  crossref  mathscinet  zmath
7. Yu. Il'yashenko, S. Yakovenko, “Concerning the Hilbert sixteenth problem”, Concerning the Hilbert 16th problem, Amer. Math. Soc. Transl. Ser. 2, 165, Adv. Math. Sci., 23, Amer. Math. Soc., Providence, RI, 1995, 1–19  crossref  mathscinet  zmath
8. Yu. Ilyashenko, Yu. Kudryashov, I. Schurov, “Global bifurcations in the two-sphere: a new perspective”, Invent. Math., 213:2 (2018), 461–506  crossref  mathscinet  zmath  adsnasa
9. Yu. S. Il'yashenko, S. Yu. Yakovenko, “Finitely-smooth normal forms of local families of diffeomorphisms and vector fields”, Russian Math. Surveys, 46:1 (1991), 1–43  mathnet  crossref  mathscinet  zmath  adsnasa
10. Yu. Ilyashenko, S. Yakovenko, “Finite cyclicity of elementary polycycles in generic families”, Concerning the Hilbert 16th problem, Amer. Math. Soc. Transl. Ser. 2, 165, Adv. Math. Sci., 23, Amer. Math. Soc., Providence, RI, 1995, 21–95  crossref  mathscinet  zmath
11. Yu. Ilyashenko, N. Solodovnikov, “Global bifurcations in generic one-parameter families with a separatrix loop on $S^2$”, Mosc. Math. J., 18:1 (2018), 93–115  mathnet  crossref  mathscinet  zmath
12. Maoan Han, Yuhai Wu, Ping Bi, “Bifurcation of limit cycles near polycycles with $n$ vertices”, Chaos Solitons Fractals, 22:2 (2004), 383–394  crossref  mathscinet  zmath  adsnasa
13. V. Kaloshin, “The existential Hilbert 16-th problem and an estimate for cyclicity of elementary polycycles”, Invent. Math., 151:3 (2003), 451–512  crossref  mathscinet  zmath
14. Al Kelley, “The stable, center-stable, center, center-unstable, and unstable manifolds”: R. Abraham, J. Robbin, Transversal mappings and flows, W. A. Benjamin, Inc., New York–Amsterdam, 1967, 134–154  mathscinet  zmath
15. P. I. Kaleda, I. V. Shchurov, “Cyclicity of elementary polycycles with fixed number of singular points in generic $k$-parameter families”, St. Petersburg Math. J., 22:4 (2011), 557–571  mathnet  crossref  mathscinet  zmath
16. A. Mourtada, “Cyclicité finie des polycycles hyperboliques de champs de vecteurs du plan. Algorithme de finitude”, Ann. Inst. Fourier (Grenoble), 41:3 (1991), 719–753  crossref  mathscinet  zmath
17. A. Mourtada, Polycycles hyperboliques génériques à trois ou quatre sommets, Thése de doctorat, Dijon, 1990 http://www.theses.fr/1990DIJOS028
18. J. W. Reyn, “Generation of limit cycles from separatrix polygons in the phase plane”, Geometrical approaches to differential equations (Scheveningen, 1979), Lecture Notes in Math., 810, Springer, Berlin, 1980, 264–289 pp.  crossref  mathscinet  zmath
19. V. Sh. Roitenberg, Nelokalnye dvukhparametricheskie bifurkatsii na poverkhnostyakh, Diss. $\dots$ kand. fiz.-matem. nauk, Yaroslavskii gos. tekh. un-t, Yaroslavl, 2000, 187 pp.
20. J. Sotomayor, “Generic one-parameter families of vector fields on two-dimensional manifolds”, Inst. Hautes Études Sci. Publ. Math., 43 (1974), 5–46  crossref  mathscinet  zmath
21. S. I. Trifonov, “Cyclicity of elementary polycycles of generic smooth vector fields”, Proc. Steklov Inst. Math., 213 (1996), 141–199  mathnet  mathscinet  zmath


© Steklov Math. Inst. of RAS, 2025