|
|
|
References
|
|
|
1. |
A. A. Andronov, E. A. Leontovich, “Generation of limit cycles from a separatrix forming a loop and from the separatrix of an equilibrium state of saddle-node type”, Amer. Math. Soc. Transl. Ser. 2, 33, Amer. Math. Soc., Providence, RI, 1963, 189–231 |
2. |
R. Abraham, J. Robbin, Transversal mappings and flows, W. A. Benjamin, Inc., New York–Amsterdam, 1967, x+161 pp. |
3. |
L. A. Cherkas, “The stability of singular cycles”, Differ. Equ., 4 (1972), 524–526 |
4. |
A. V. Dukov, Tipichnye konechno-parametricheskie semeistva vektornykh polei na dvumernoi sfere, Diss. $\dots$ kand. fiz.-matem. nauk, MGU, M., 2023, 84 pp. |
5. |
A. V. Dukov, “Bifurcations of the ‘heart’ polycycle in generic 2-parameter families”, Trans. Moscow Math. Soc., 2018, 209–229 |
6. |
A. Dukov, Y. Ilyashenko, “Numeric invariants in semilocal bifurcations”, J. Fixed Point Theory Appl., 23:1 (2021), 3, 15 pp. |
7. |
Yu. Il'yashenko, S. Yakovenko, “Concerning the Hilbert sixteenth problem”, Concerning the Hilbert 16th problem, Amer. Math. Soc. Transl. Ser. 2, 165, Adv. Math. Sci., 23, Amer. Math. Soc., Providence, RI, 1995, 1–19 |
8. |
Yu. Ilyashenko, Yu. Kudryashov, I. Schurov, “Global bifurcations in the two-sphere: a new perspective”, Invent. Math., 213:2 (2018), 461–506 |
9. |
Yu. S. Il'yashenko, S. Yu. Yakovenko, “Finitely-smooth normal forms of local families of diffeomorphisms and vector fields”, Russian Math. Surveys, 46:1 (1991), 1–43 |
10. |
Yu. Ilyashenko, S. Yakovenko, “Finite cyclicity of elementary polycycles in generic families”, Concerning the Hilbert 16th problem, Amer. Math. Soc. Transl. Ser. 2, 165, Adv. Math. Sci., 23, Amer. Math. Soc., Providence, RI, 1995, 21–95 |
11. |
Yu. Ilyashenko, N. Solodovnikov, “Global bifurcations in generic one-parameter families with a separatrix loop on $S^2$”, Mosc. Math. J., 18:1 (2018), 93–115 |
12. |
Maoan Han, Yuhai Wu, Ping Bi, “Bifurcation of limit cycles near polycycles with $n$ vertices”, Chaos Solitons Fractals, 22:2 (2004), 383–394 |
13. |
V. Kaloshin, “The existential Hilbert 16-th problem and an estimate for cyclicity of elementary polycycles”, Invent. Math., 151:3 (2003), 451–512 |
14. |
Al Kelley, “The stable, center-stable, center, center-unstable, and unstable manifolds”: R. Abraham, J. Robbin, Transversal mappings and flows, W. A. Benjamin, Inc., New York–Amsterdam, 1967, 134–154 |
15. |
P. I. Kaleda, I. V. Shchurov, “Cyclicity of elementary polycycles with fixed number of singular points in generic $k$-parameter families”, St. Petersburg Math. J., 22:4 (2011), 557–571 |
16. |
A. Mourtada, “Cyclicité finie des polycycles hyperboliques de champs de vecteurs du plan. Algorithme de finitude”, Ann. Inst. Fourier (Grenoble), 41:3 (1991), 719–753 |
17. |
A. Mourtada, Polycycles hyperboliques génériques à trois ou quatre sommets, Thése de doctorat, Dijon, 1990 http://www.theses.fr/1990DIJOS028 |
18. |
J. W. Reyn, “Generation of limit cycles from separatrix polygons in the phase plane”, Geometrical approaches to differential equations (Scheveningen, 1979), Lecture Notes in Math., 810, Springer, Berlin, 1980, 264–289 pp. |
19. |
V. Sh. Roitenberg, Nelokalnye dvukhparametricheskie bifurkatsii na poverkhnostyakh, Diss. $\dots$ kand. fiz.-matem. nauk, Yaroslavskii gos. tekh. un-t, Yaroslavl, 2000, 187 pp. |
20. |
J. Sotomayor, “Generic one-parameter families of vector fields on two-dimensional manifolds”, Inst. Hautes Études Sci. Publ. Math., 43 (1974), 5–46 |
21. |
S. I. Trifonov, “Cyclicity of elementary polycycles of generic smooth vector fields”, Proc. Steklov Inst. Math., 213 (1996), 141–199 |