RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik

Mat. Sb., 2018, Volume 209, Number 8, Pages 29–55 (Mi sm9031)

Surprising examples of nonrational smooth spectral surfaces
A. B. Zheglov

References

1. L. Bădescu, Projective geometry and formal geometry, IMPAN Monogr. Mat. (N. S.), 65, Birkhäuser Verlag, Basel, 2004, xiv+209 pp.  crossref  mathscinet  zmath
2. Yu. Berest, P. Etingof, V. Ginzburg, “Cherednik algebras and differential operators on quasi-invariants”, Duke Math. J., 118:2 (2003), 279–337  crossref  mathscinet  zmath
3. Yu. Berest, A. Kasman, “$\mathscr D$-modules and Darboux transformations”, Lett. Math. Phys., 43:3 (1998), 279–294  crossref  mathscinet  zmath
4. I. Burban, A. Zheglov, Cohen–Macaulay modules over the algebra of planar quasi-invariants and Calogero–Moser systems, arXiv: 1703.01762
5. N. Bourbaki, Éléments de mathématique. Algèbre commutative, v. 27, 28, 30, 31, Actualités Sci. Indust., 1290, 1293, 1308, 1314, Hermann, Paris, 1961–1965, 187 pp., 183 pp., 207 pp., iii+146 pp.  mathscinet  mathscinet  mathscinet  mathscinet  mathscinet  zmath  zmath
6. O. Chalykh, “Algebro-geometric Schrödinger operators in many dimensions”, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 366:1867 (2008), 947–971  crossref  mathscinet  zmath  adsnasa
7. O. A. Chalykh, A. P. Veselov, “Commutative rings of partial differential operators and Lie algebras”, Comm. Math. Phys., 126:3 (1990), 597–611  crossref  mathscinet  zmath  adsnasa
8. A. P. Veselov, K. L. Styrkas, O. A. Chalykh, “Algebraic integrability for the Schrödinger equation and finite reflection groups”, Theoret. and Math. Phys., 94:2 (1993), 182–197  mathnet  crossref  mathscinet  zmath  adsnasa
9. O. Chalykh, M. Feigin, A. Veselov, “New integrable generalizations of Calogero–Moser quantum problem”, J. Math. Phys., 39:2 (1998), 695–703  crossref  mathscinet  zmath  adsnasa
10. B. A. Dubrovin, “Matrix finite-zone operators”, J. Soviet Math., 28:1 (1985), 20–50  mathnet  crossref  mathscinet  zmath
11. B. A. Dubrovin, V. B. Matveev, S. P. Novikov, “Non-linear equations of Korteweg–de Vries type, finite-zone linear operators, and Abelian varieties”, Russian Math. Surveys, 31:1 (1976), 59–146  mathnet  crossref  mathscinet  zmath  adsnasa
12. B. A. Dubrovin, I. M. Krichever, S. P. Novikov, “Integrable systems. I”, Dynamical systems IV, Encyclopaedia Math. Sci., 4, Springer, Berlin, 1990, 173–280  mathnet  crossref  mathscinet  mathscinet  zmath  zmath
13. M. Feigin, D. Johnston, “A class of Baker–Akhiezer arrangements”, Comm. Math. Phys., 328:3 (2014), 1117–1157  crossref  mathscinet  zmath  adsnasa
14. P. G. Grinevich, “Vector rank of commuting matrix differential operators. Proof of S. P. Novikov's criterion”, Math. USSR-Izv., 28:3 (1987), 445–465  mathnet  crossref  mathscinet  zmath
15. A. Grothendieck, “Éléments de géométrie algébrique. II. Étude globale élémentaire de quelques classes de morphismes”, Inst. Hautes Études Sci. Publ. Math., 8 (1961), 5–222  mathscinet
16. A. Grothendieck, “Éléments de géométrie algèbrique. IV. Étude locale des schémas et des morphismes de schémas. III”, Inst. Hautes Études Sci. Publ. Math., 28 (1966), 5–255  mathscinet  zmath
17. R. Hartshorne, Algebraic geometry, Grad. Texts in Math., 52, Springer-Verlag, New York–Heidelberg, 1977, xvi+496 pp.  crossref  mathscinet  mathscinet  zmath  zmath
18. G. J. Heckman, “A remark on the Dunkl differential-difference operators”, Harmonic analysis on reductive groups (Brunswick, ME, 1989), Progr. Math., 101, Birkhäuser Boston, Boston, MA, 1991, 181–191  mathscinet  zmath
19. G. J. Heckman, E. M. Opdam, “Root systems and hypergeometric functions. I”, Compositio Math., 64:3 (1987), 329–352  mathscinet  zmath
20. I. M. Krichever, “Methods of algebraic geometry in the theory of non-linear equations”, Russian Math. Surveys, 32:6 (1977), 185–213  mathnet  crossref  mathscinet  zmath
21. I. M. Krichever, “Commutative rings of ordinary linear differential operators”, Funct. Anal. Appl., 12:3 (1978), 175–185  mathnet  crossref  mathscinet  zmath
22. I. M. Krichever, S. P. Novikov, “Two-dimensionalized Toda lattice, commuting difference operators, and holomorphic bundles”, Russian Math. Surveys, 58:3 (2003), 473–510  mathnet  crossref  crossref  mathscinet  zmath  adsnasa
23. Vik. S. Kulikov, “On divisors of small canonical degree on the Godaux surfaces”, Sb. Math., 209:8 (2018)  mathnet  crossref  elib
24. H. Kurke, D. Osipov, A. Zheglov, “Commuting differential operators and higher-dimensional algebraic varieties”, Selecta Math. (N. S.), 20:4 (2014), 1159–1195  crossref  mathscinet  zmath
25. A. B. Zheglov, H. Kurke, “Geometric properties of commutative subalgebras of partial differential operators”, Sb. Math., 206:5 (2015), 676–717  mathnet  crossref  crossref  mathscinet  zmath  adsnasa
26. G. S. Mauleshova, A. E. Mironov, “One-point commuting difference operators of rank 1”, Dokl. Math., 93:1 (2016), 62–64  crossref  mathscinet  zmath; arXiv: 1507.00527
27. A. E. Mironov, “Commutative rings of differential operators corresponding to multidimensional algebraic varieties”, Siberian Math. J., 43:5 (2002), 888–898  mathnet  crossref  mathscinet  zmath
28. K. Cho, A. Mironov, A. Nakayashiki, “Baker–Akhiezer modules on the intersections of shifted theta divisors”, Publ. Res. Inst. Math. Sci., 47:2 (2011), 553–567  crossref  mathscinet  zmath
29. M. Mulase, “Category of vector bundles on algebraic curves and infinite dimensional Grassmanians”, Internat. J. Math., 1:3 (1990), 293–342  crossref  mathscinet  zmath
30. M. Mulase, “Algebraic theory of the KP equations”, Perspectives in mathematical physics, Conf. Proc. Lecture Notes Math. Phys., III, Int. Press, Cambridge, MA, 1994, 151–217  mathscinet  zmath
31. A. Nakayashiki, “Commuting partial differential operators and vector bundles over Abelian varieties”, Amer. J. Math., 116:1 (1994), 65–100  crossref  mathscinet  zmath
32. A. Nakayashiki, “Structure of Baker–Akhiezer modules of principally polarized Abelian varieties, commuting partial differential operators and associated integrable systems”, Duke Math. J., 62:2 (1991), 315–358  crossref  mathscinet  zmath
33. D. V. Osipov, “The Krichever correspondence for algebraic varieties”, Izv. Math., 65:5 (2001), 941–975  mathnet  crossref  crossref  mathscinet  zmath
34. S. O. Gorchinskiy, D. V. Osipov, “Continuous homomorphisms between algebras of iterated Laurent series over a ring”, Proc. Steklov Inst. Math., 294 (2016), 47–66  mathnet  crossref  crossref  mathscinet  zmath
35. S. O. Gorchinskiy, D. V. Osipov, “Higher-dimensional Contou-Carrère symbol and continuous automorphisms”, Funct. Anal. Appl., 50:4 (2016), 268–280  mathnet  crossref  crossref  mathscinet  zmath
36. A. B. Zheglov, D. V. Osipov, “On some questions related to the Krichever correspondence”, Math. Notes, 81:4 (2007), 467–476  mathnet  crossref  crossref  mathscinet  zmath
37. M. A. Olshanetsky, A. M. Perelomov, “Quantum integrable systems related to Lie algebras”, Phys. Rep., 94:6 (1983), 313–404  crossref  mathscinet  adsnasa
38. A. N. Parshin, “The Krichever correspondence for algebraic surfaces”, Funct. Anal. Appl., 35:1 (2001), 74–76  mathnet  crossref  crossref  mathscinet  zmath
39. A. N. Parshin, “Integrable systems and local fields”, Comm. Algebra, 29:9 (2001), 4157–4181  crossref  mathscinet  zmath
40. E. Previato, “Multivariable Burchnall–Chaundy theory”, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 366:1867 (2008), 1155–1177  crossref  mathscinet  zmath  adsnasa
41. V. Przyjalkowski, C. Shramov, “On Hodge numbers of complete intersections and Landau–Ginzburg models”, Int. Math. Res. Not. IMRN, 2015:21 (2015), 11302–11332  crossref  mathscinet  zmath
42. V. V. Przyjalkowski, “Calabi–Yau compactifications of toric Landau–Ginzburg models for smooth Fano threefolds”, Sb. Math., 208:7 (2017), 992–1013  mathnet  crossref  crossref  mathscinet  zmath  adsnasa
43. M. Rothstein, “Dynamics of the Krichever construction in several variables”, J. Reine Angew. Math., 2004:572 (2004), 111–138  crossref  mathscinet  zmath
44. A. B. Zheglov, “On rings of commuting partial differential operators”, St. Petersburg Math. J., 25:5 (2014), 775–814  mathnet  crossref  mathscinet  zmath
45. A. B. Zheglov, Puchki bez krucheniya na mnogoobraziyakh i integriruemye sistemy, Diss. … dokt. fiz.-matem. nauk, Matem. in-t im. V. A. Steklova RAN, M., 2016, 201 pp. http://www.mi.ras.ru/dis/ref16/zheglov/dis.pdf


© Steklov Math. Inst. of RAS, 2025