|
|
|
ЛИТЕРАТУРА
|
|
|
1. |
Adem A., Leida J., Ruan Y., Orbifolds and stringy topology, Cambridge Tracts Math., 171, Cambridge Univ. Press, Cambridge, 2007 |
2. |
Багаев А. В., Жукова Н. И., “Группы автоморфизмов $G$-структур конечного типа на орбиобразиях”, Сиб. мат. журн., 44:2 (2003), 263–278 |
3. |
Zhukova N. I., “Cartan geometry on orbifolds”, Non-Euclidean geometry in modern physics, Proc. Fifth Intern. Conf. Bolyai–Gauss–Lobachevsky, B. I. Stepanov Institute of physics, National Academy of Sciences of Belarus, 2006, 228–238 |
4. |
Bagaev A. V., Zhukova N. I., “The automorphism group of some geometric structures on orbifolds”, Lie groups: New research, Nova Sci. Publ., Inc., New York, 2009, 447–483 |
5. |
Багаев А. В., Жукова Н. И., “Группы изометрий римановых орбифолдов”, Сиб. мат. журн., 48:4 (2007), 723–741 |
6. |
D'Ambra G., Gromov M., “Lectures on transformation groups: geometry and dynamics”, Surv. Differ. Geom., Suppl. J. Differ. Geom., 1, 1991, 19–111 |
7. |
Zimmer R. J., “Automorphism groups and fundamental groups of geometric manifolds”, Proc. Symp. Pure Math., 54 (1993), 693–710 |
8. |
Zeghib A., “Isometry groups and geodesic foliations of Lorentz manifolds. Part I. Foundations of Lorentz dynamics”, Geom. Funct. Anal., 9 (1999), 775–822 |
9. |
Zeghib A., “Isometry groups and geodesic foliations of Lorentz manifolds. Part II. Geometry of analytic Lorentz manifolds with large isometry groups”, Geom. Funct. Anal., 9 (1999), 823–854 |
10. |
Barbot T., Zeghib A., “Group actions on Lorentz spaces”, Mathematical aspects: a survey in the Einstein equations and the large-scale behavior of gravitational fields, Birkhauser, Basel, 2004, 401–439 |
11. |
Sanchez M., “Structure of Lorentzian tori with a Killing vector field”, Trans. Amer. Math. Soc., 349:3 (1997), 1063–1080 |
12. |
Sanchez M., “Lorentzian manifolds admitting a Killing vector field”, Nonlinear Anal. TMA, 30:1 (1997), 643–654 |
13. |
Mounoud P., “Dynamical properties of the space of Lorentzian metrics”, Comment. Math. Helv., 78 (2003), 463–485 |
14. |
Frances C., “Essential conformal structures in Riemannian and Lorentzian geometry”, Recent developments in pseudo-Riemannian geometry, ESI Lect. Math. Phys., Eur. Math. Soc., Zurich, 2008, 231–260 |
15. |
Deffaf M., Melnick K., Zeghib A., “Actions of noncompact semisimple groups on Lorentz manifolds”, Geom. Funct. Anal., 18 (2008), 463–488 |
16. |
Кобаяси Ш., Номидзу К., Основы дифференциальной геометрии, т. 1, Наука, М., 1981 |