RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal

Sibirsk. Mat. Zh., 2023, Volume 64, Number 5, Pages 945–970 (Mi smj7807)

Locally convex spaces with all Archimedean cones closed
A. E. Gutman, I. A. Emelyanenkov

References

1. Kutateladze S. S., Osnovy funktsionalnogo analiza, Izd-vo In-ta matematiki, Novosibirsk, 2006
2. Aliprantis C. D., Tourky R., Cones and duality, Amer. Math. Soc., Providence, RI, 2007  mathscinet  zmath
3. Gutman A. E., Emelyanov E. Yu., Matyukhin A. V., “Nezamknutye arkhimedovy konusy v lokalno vypuklykh prostranstvakh”, Vladikavk. mat. zhurn., 17:3 (2015), 36–43  mathnet  mathscinet  zmath
4. Wilansky A., Modern methods in topological vector spaces, McGraw-Hill, New York, 1978  mathscinet  zmath
5. Storozhuk K. V., “Tonkie giperploskosti”, Sib. elektron. mat. izv., 15 (2018), 1553–1555  mathnet  mathscinet  zmath
6. Aliprantis C. D., Border K. C., Infinite dimensional analysis. A hitchhiker's guide, 3rd ed., Springer-Verl., Berlin–Heidelberg, 2006  mathscinet
7. Borwein J. M., Lewis A. S., “Partially finite convex programming, Part I: Quasi relative interiors and duality theory”, Math. Programming, 57 (1992), 15–48  crossref  mathscinet  zmath
8. Boţ R. I., Grad S.-M., Wanka G., Duality in vector optimization, Springer-Verl., Berlin–Heidelberg, 2009  mathscinet  zmath
9. Peressini A. L., Ordered topological vector spaces, Harper & Row, New York, etc., 1967  mathscinet  zmath
10. Köthe G., Topological vector spaces I, Springer-Verlag, New York, 1969  mathscinet  zmath
11. Anger B., Lembcke J., “Extension of linear forms with strict domination on locally compact cones”, Math. Scand., 47 (1980), 251–265  crossref  mathscinet  zmath


© Steklov Math. Inst. of RAS, 2025