|
|
|
ЛИТЕРАТУРА
|
|
|
1. |
Кутателадзе С. С., Основы функционального анализа, Изд-во Ин-та математики, Новосибирск, 2006 |
2. |
Aliprantis C. D., Tourky R., Cones and duality, Amer. Math. Soc., Providence, RI, 2007 |
3. |
Гутман А. Е., Емельянов Э. Ю., Матюхин А. В., “Незамкнутые архимедовы конусы в локально выпуклых пространствах”, Владикавк. мат. журн., 17:3 (2015), 36–43 |
4. |
Wilansky A., Modern methods in topological vector spaces, McGraw-Hill, New York, 1978 |
5. |
Сторожук К. В., “Тонкие гиперплоскости”, Сиб. электрон. мат. изв., 15 (2018), 1553–1555 |
6. |
Aliprantis C. D., Border K. C., Infinite dimensional analysis. A hitchhiker's guide, 3rd ed., Springer-Verl., Berlin–Heidelberg, 2006 |
7. |
Borwein J. M., Lewis A. S., “Partially finite convex programming, Part I: Quasi relative interiors and duality theory”, Math. Programming, 57 (1992), 15–48 |
8. |
Boţ R. I., Grad S.-M., Wanka G., Duality in vector optimization, Springer-Verl., Berlin–Heidelberg, 2009 |
9. |
Peressini A. L., Ordered topological vector spaces, Harper & Row, New York, etc., 1967 |
10. |
Köthe G., Topological vector spaces I, Springer-Verlag, New York, 1969 |
11. |
Anger B., Lembcke J., “Extension of linear forms with strict domination on locally compact cones”, Math. Scand., 47 (1980), 251–265 |