|
|
|
ЛИТЕРАТУРА
|
|
|
1. |
Merikoski J. K., “On $I_{p_1,p_2}$ antinorms of nonnegative matrices”, Linear Algebra Appl., 140 (1990), 31–44 |
2. |
Bourin J.-C., Hiai F., “Anti-norms on finite von Neumann algebras”, Publ. Res. Inst. Math. Sci., 51:2 (2015), 207–235 |
3. |
Guglielmi N., Zennaro M., “Canonical construction of polytope Barabanov norms and antinorms for sets of matrices”, SIAM J. Matrix Anal. Appl., 36:2 (2015), 634–655 |
4. |
Guglielmi N., Zennaro M., “An antinorm theory for sets of matrices: Bounds and approximations to the lower spectral radius”, Linear Algebra Appl., 607 (2020), 89–117 |
5. |
Protasov V. Yu., “Antinorms on cones: duality and applications”, Linear Multilinear Algebra, 2021 |
6. |
Moszyńska M., Richter W-D., “Reverse triangle inequality, antinorms and semi-antinorms”, Studia Sci. Math. Hung., 49:1 (2012), 120–138 |
7. |
Guglielmi N., Protasov V. Yu., “Exact computation of joint spectral characteristics of linear operators”, Found. Comput. Math., 13:1 (2013), 37–97 |
8. |
Guglielmi N., Laglia L., Protasov V. Yu., “Polytope Lyapunov functions for stable and for stabilizable LSS”, Found. Comput. Math., 17 (2017), 567–623 |
9. |
Fornasini E., Valcher M. E., “Stability and stabilizability criteria for discrete-time positive switched systems”, IEEE Trans. Automat. Control, 57:5 (2012), 1208–1221 |
10. |
Fornasini E., Valcher M. E., “Asymptotic stability and stabilizability of special classes of discrete-time positive switched systems”, Linear Alg. Appl., 438:4 (2013), 1814–1831 |
11. |
Барабанов Н. Е., “Об абсолютном характеристическом показателе класса линейных нестационарных систем дифференциальных уравнений”, Сиб. мат. журн., 29:4 (1988), 12–22 |
12. |
Blanchini F., Savorgnanb C., “Stabilizability of switched linear systems does not imply the existence of convex Lyapunov functions”, Automatica, 44:4 (2008), 1166–1170 |
13. |
Blondel V. D., Tsitsiklis J. N., “The Lyapunov exponent and joint spectral radius of pairs of matrices are hard – when not impossible – to compute and to approximate”, Math. Control, Signals, Systems, 10 (1997), 31–40 |
14. |
Bochi J., Morris I. D., “Continuity properties of the lower spectral radius”, Proc. London Math. Soc., 110:2 (2014), 477–509 |
15. |
Furstenberg H., Kesten H., “Products of random matrices”, Ann. Math. Statist., 31 (1960), 457–469 |
16. |
Hennion H., “Limit theorems for products of positive random matrices”, Ann. Prob., 25:4 (1997), 1545–1587 |
17. |
Jungers R. M., Protasov V. Yu., “Lower and upper bounds for the largest Lyapunov exponent of matrices”, Linear Algebra Appl., 438 (2013), 4448–4468 |
18. |
Protasov V. Yu., “Invariant functionals of random matrices”, Funct. Anal. Appl., 44 (2010), 230–233 |
19. |
Protasov V. Yu., “Invariant functionals for the Lyapunov exponents of random matrices”, Sbornik: Mathematics, 202:1 (2011), 101–126 |
20. |
Protasov V. Yu., “Asymptotics of products of nonnegative random matrices”, Funct. Anal. Appl., 47:2 (2013), 138–147 |
21. |
Oseledets V. I., “A multiplicative ergodic theorem. Lyapunov characteristic numbers for dynamical systems”, Trans. Mosc. Math. Soc., 19 (1968), 197–231 |
22. |
Pollicott M., “Maximal Lyapunov exponent for random matrix products”, Invent. Math., 181 (2010), 209–226 |
23. |
Bourin J.-C., Hiai F., “Norm and anti-norm inequalities for positive semi-definite matrices”, Internat. J. Math., 22:8 (2011), 1121–1138 |
24. |
Bourin J.-C., Hiai F., “Jensen and Minkowski inequalities for operator means and anti-norms”, Linear Algebra Appl., 456 (2014), 22–53 |