RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal

Sibirsk. Mat. Zh., 2005, Volume 46, Number 1, Pages 32–45 (Mi smj956)

On representation of elements of a Von Neumann algebra in the form of finite sums of products of projections
A. M. Bikchentaev

References

1. Dixmier J., “Position relative de deux variétés linéares fermées dans un espace de Hilbert”, Rev. Sci. Paris, 86 (1948), 387–399  mathscinet  zmath
2. Broise M., “Commutateurs dans le groupe unitaire d'un facteur”, J. Math. Pures Appl., 46:3 (1967), 299–312  mathscinet
3. Fillmore P. A., Topping D. M., “Operator algebras generated by projections”, Duke Math. J., 34:2 (1967), 333–336  crossref  mathscinet  zmath
4. Fillmore P. A., “Sums of operators with square zero”, Acta. Sci. Math. (Szeged), 28:3–4 (1967), 285–288  mathscinet  zmath
5. Pearcy C., Topping D. M., “Sums of small numbers of idempotents”, Michigan Math. J., 14:4 (1967), 453–465  crossref  mathscinet  zmath
6. Matsumoto K., “Self-adjoint operators as a real span of 5 projections”, Math. Japon., 29:2 (1984), 291–294  mathscinet  zmath
7. Holland S. S., Jr., “Projections algebraically generate the bounded operators on real or quaternionic Hilbert space”, Proc. Amer. Math. Soc., 123:11 (1995), 3361–3362  crossref  mathscinet  zmath
8. Bikchentaev A. M., “O predstavlenii lineinykh operatorov v gilbertovom prostranstve v vide konechnykh summ proizvedenii proektorov”, Dokl. RAN, 393:4 (2003), 444–447  mathnet  mathscinet
9. Takesaki M., Theory of operator algebras, I, Springer-Verl., New York; Heidelberg; Berlin, 1979  mathscinet
10. Dixmier J., Les algèbres d'opérateurs dans l'espace Hilbertien, 2nd ed., Gauthier-Villars, Paris, 1969
11. Sakai S., $C^*$-algebras and $W^*$-algebras, Springer-Verl., New York; Heidelberg; Berlin, 1971  mathscinet  zmath
12. Deckard D., Pearcy C., “On matrices over ring of continuous complex valued functions on a Stonian space”, Proc. Amer. Math. Soc., 14:2 (1963), 322–328  crossref  mathscinet  zmath
13. Wegge-Olsen N. E., K-theory and $C^*$-algebras. A friendly approach, Oxford Sci. Publ., The Clarendon Press, Oxford Univ. Press, New York, 1993  mathscinet  zmath
14. Goldstein S., Paszkiewicz A., “Linear combinations of projections in von Neumann algebras”, Proc. Amer. Math. Soc., 116:1 (1992), 175–183  crossref  mathscinet  zmath
15. Marcoux L. W., Murphy G. J., “Unitarily-invariant linear spaces in $C^*$-algebras”, Proc. Amer. Math. Soc., 126:12 (1998), 3597–3605  crossref  mathscinet  zmath
16. Marcoux L. W., “On the linear span of the projections in certain simple $C^*$-algebras”, Indiana Univ. Math. J., 51:3 (2002), 753–771  crossref  mathscinet  zmath
17. Bikchentaev A. M., Sherstnev A. N., “Proektorno-vypuklye kombinatsii v $C^*$-algebrakh so svoistvom unitarnoi faktorizatsii”, Mat. zametki, 76:4 (2004), 625–628  mathnet  mathscinet  zmath
18. Koliha J. J., “Range projections of idempotents in $C^*$-algebras”, Demonstratio Math., 24:1 (2001), 91–103  mathscinet
19. Kadison R. V., “Diagonalizing matrices”, Amer. J. Math., 106:6 (1984), 1451–1468  crossref  mathscinet  zmath
20. Fujii J. I., Furuta T., “Holub's factorization and normal approximations of idempotent operators”, Math. Japon., 25:1 (1980), 143–145  mathscinet  zmath
21. Fillmore P. A., “On sums of projections”, J. Funct. Anal., 4:1 (1969), 146–152  crossref  mathscinet  zmath
22. Hance-Olsen H., Størmer E., Jordan operator algebras, Pitman Publ. Inc., Boston; London; Melbourne, 1984  mathscinet
23. Burbaki N., Teoriya mnozhestv, Mir, M., 1965
24. Merfi Dzh., $C^*$-algebry i teoriya operatorov, Faktorial, M., 1997


© Steklov Math. Inst. of RAS, 2025