RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal

Sibirsk. Mat. Zh., 2005, Volume 46, Number 1, Pages 90–97 (Mi smj960)

The Cayley–Menger determinant is irreducible for $n\geqslant3$
C. D'Andrea, M. Sombra

References

1. Berzhe M., Geometriya, Mir, M., 1984. T. 1
2. Blumenthal L. M., Theory and applications of distance geometry, Clarendon Press, Oxford, 1953  mathscinet  zmath
3. Berger M., “Une caractérisation purement métrique des variétés riemanniennes à courbure constante”, E. B. Christoffel: the influence of his work on mathematics and the physical sciences, Birkhäuser, Basel etc., 1981, 480–492  mathscinet
4. Connelly R., Sabitov I., Walz A., “The bellows conjecture”, Beitr. Algebra Geom., 38:1 (1997), 1–10  mathscinet  zmath
5. Sabitov I. Kh., “Ob'em mnogogrannika kak funktsiya dlin ego reber”, Fundam. i prikladn. matematika, 2:4 (1996), 1235–1246  mathnet  mathscinet  zmath
6. Sabitov I. Kh., “The volume as a metric invariant of polyhedra”, Discrete Comput. Geom., 20:4 (1998), 405–425  crossref  mathscinet  zmath
7. Deo N., Micikevicius P., “Generating edge-disjoint sets of quadruples in parallel for the molecular conformation problem”, Congr. Numer., 143 (2000), 81–96  mathscinet  zmath
8. Klapper M. H., DeBrota D., “Use of Cayley-Menger determinants in the calculation of molecular structures”, J. Comput. Phys., 37 (1980), 56–69  crossref  mathscinet  zmath  adsnasa
9. Emiris I. Z., Mourrain B., “Computer algebra methods for studying and computing molecular conformations”, Algorithmica, 25:2–3 (1999), 372–402  crossref  mathscinet


© Steklov Math. Inst. of RAS, 2025