RUS  ENG
Full version
JOURNALS // Zhurnal Srednevolzhskogo Matematicheskogo Obshchestva

Zhurnal SVMO, 2017, Volume 19, Number 3, Pages 24–30 (Mi svmo670)

On integer points in two polyhedra
S. I. Veselov

References

1. A. Schrijver, Theory of Linear andInteger Programming, v. 2, Mir Publ., Moscow, 1991, 342 pp. (In Russ.)  mathscinet
2. V.A Emelichev, M.M. Kovalev, M.K. Kravtsov, Polyhedra, Graphs, and Optimization, Nauka Publ., Moscow, 1981, 344 pp. (In Russ.)  mathscinet
3. J. Moussafir, “Sails and Hilbert Bases”, Funktsional. Anal. i Prilozhen., 34:2 (2000), 43–49 (In Russ.)  mathnet  crossref  mathscinet
4. O.  N. German, “Sails and Hilbert Bases”, Tr. Mat. Inst. Steklova, 239 (2002), 98–105 (In Russ.)  mathnet  zmath
5. C. Bouvier and G. Gonzalez-Sprinberg, “Systeme generateurs minimal, diviseurs essentiels et G-desingularizations de varietes toriques”, Tohoku Math. J., 47:1 (1995), 125–149  crossref  mathscinet  zmath  scopus
6. J. Edmonds, “Maximum matching and a polyhedron with 0, 1-vertices”, J. Res. Nat. Bur. Standards Sect., 69:1 (1965), 125–130  crossref  mathscinet  zmath
7. V. Chvatal, “Edmonds polytopes and a hierarchy of combinatorial problems”, Discrete Mathematics, 4:4 (1973), 305–337  crossref  mathscinet  zmath  scopus
8. W. Cook W., C.R. Coullard, G. Turan, “On the complexity of cutting-plane proofs”, Discrete Applied Mathematics, 18:1 (1987), 25–38  crossref  mathscinet  zmath  scopus
9. M. Rhodes, “On the Chvatal rank of the Pigeonhole Principle”, Theoretical Computer Science, 410:27-29 (2009), 2774–2778  crossref  mathscinet  zmath  scopus
10. F. Eisenbrand, A.S. Schulz, “Bounds on the chvatal rank of polytopes in the 0/1-cube”, Combinatorica, 23:2 (2003), 245–261  crossref  mathscinet  zmath  scopus
11. S. I. Veselov, A, J. Chirkov, “Integer program with bimodular matrix”, Discrete Optimization, 6:2 (2009), 220–222  crossref  mathscinet  zmath  elib  scopus


© Steklov Math. Inst. of RAS, 2025