RUS  ENG
Full version
JOURNALS // Zhurnal Srednevolzhskogo Matematicheskogo Obshchestva

Zhurnal SVMO, 2018, Volume 20, Number 3, Pages 260–272 (Mi svmo705)

On the Lyapunov functionals method in the stability problem of Volterra integro-differential equations
A. S. Andreev, O. A. Peregudova

References

1. V. Volterra, Theory of Functionals and Integral and Integro-Differential Equations, Dover, New York, 1959 (In Russ.)
2. N. N. Krasovskii, Stability of Motion, Standford University Press, Standford, 1963 (In Russ.)
3. L. Hatvani, “Marachkov type stability conditions for non-autonomous functional differential equations with unbounded right-hand sides”, Electronic Journal of Qualitive Theory of Differential Equations, 64 (2015), 1–11  mathscinet
4. A. S. Andreev, “The Lyapunov functionals method in stability problems for functional differential equations”, Automation and Remote Control, 70 (2009), 1438–-1486  mathnet  zmath  elib
5. T. A. Burton, Volterra Integral and Differential Equations, Mathematics in Science and Engineering, 202, 2nd ed., Elsevier B. V., Amsterdam, 2005  mathscinet  zmath
6. O. A. Peregudova, “Development of the Lyapunov function method in the stability problem for functional-differential equations”, Differential Equations, 44:12 (2008), 1701–-1710  mathscinet  elib
7. J. Hale, Theory of Functional Differential Equations, Springer-Verlag, New York, 1977  mathscinet  zmath
8. C. Corduneanu, and V. Lakshmikantham, “Equations with unbounded delay: a survey”, Nonlinear Analysis, Theory, Methods and Applications, 4 (1980), 831–877  crossref  mathscinet  zmath  scopus
9. J. Hale, and J. Kato, “Phase space for retarded equations with infinite delay”, Fukcialaj Ekvacioj, 21 (1978), 11–41  mathscinet  zmath
10. S. Murakami, “Perturbation theorems for functional differential equations with infinite delay via limiting equations”, J. Differential Eqns., 59 (1985), 314–335  crossref  mathscinet  zmath  adsnasa  scopus
11. G. Makay, “On the asymptotic stability of the solutions of functional differential equations with infinite delay”, J. Differential Eqns., 108 (1994), 139–151  crossref  mathscinet  zmath  adsnasa  scopus
12. V. S. Sergeev, “Resonance Oscillations in Some Systems with Aftereffect”, Journal of Applied Mathematics and Mechanics, 79:5 (2015), 432–439 (In Russ.)  elib
13. A. S. Andreev, and O. A. Peregudova, “Stabilization of the preset motions of a holonomic mechanical system without velocity measurement”, Journal of Applied Mathematics and Mechanics, 81:2 (2017), 95–105 (In Russ.)  elib
14. A. Andreev, O. Peregudova, “Non-linear PI regulators in control problems for holonomic mechanical systems”, Systems Science and Control Engineering, 6:1 (2018), 12–19  crossref  scopus
15. A. S. Andreev, O. A. Peregudova, “Nelineynyye regulyatory v zadache o stabilizatsii polozheniya golonomnoy mekhanicheskoy sistemy”, Journal of Applied Mathematics and Mechanics, 82:2 (2018), 156–176 (In Russ.)
16. A. S. Andreev, O. A. Peregudova, and S. Y. Rakov, “On Modeling a nonlinear integral regulator on the base of the Volterra equations”, Zhurnal Srednevolzhskogo Matematicheskogo Obshchestva, 18:3 (2016), 8–18 (In Russ.)  mathnet  elib
17. Z. Artstein, “Topological dynamics of an ordinary differential equation”, J. Different. Equat., 23:2 (1977), 216–223  crossref  mathscinet  zmath  adsnasa  scopus
18. A. S. Andreyev, O. A. Peregudova, “The Comparison Method in Asymptotic Stability Problems,”, Journal of Applied Mathematics and Mechanics, 70:6 (2006), 865–875  mathscinet  zmath  elib
19. N. Rouche, P. Habets, M. Laloy, Stability Theory by Lyapunov’s Direct Method, Springer, New York, 1977 (In Russ.)  mathscinet
20. F. Chen, “Global asymptotic stability in n-species non-autonomous Lotka-Volterra competitive systems with infinite delays and feedback control”, Applied Mathematics and Computation, 170 (2005), 1452–1468  crossref  mathscinet  zmath  scopus


© Steklov Math. Inst. of RAS, 2025