RUS  ENG
Full version
JOURNALS // Proceedings of the Institute of Mathematics of the NAS of Belarus

Tr. Inst. Mat., 2017, Volume 25, Number 2, Pages 91–105 (Mi timb281)

A nonlocal problem with integral conditions for one-dimensional biwave equation
V. I. Korzyuk, N. V. Vinh

References

1. X. Feng, M. Neilan, “Finite element methods for a bi-wave equation modeling d-wave superconductors”, J. Comput. Math., 28:3 (2010), 331–353  mathscinet  zmath
2. X. Feng, M. Neilan, “Discontinuous finite element methods for a bi-wave equation modeling d-wave superconductors”, Math. Comput., 80:275 (2011), 1303–1333  crossref  mathscinet  zmath
3. W. I. Fushchych, O. V. Roman, R. Z. Zhdanov, “Symmetry reduction and some exact solutions of nonlinear biwave equations”, Rep. Math. Phys., 37:2 (1996), 267–281  crossref  mathscinet  zmath  adsnasa
4. V. I. Korzyuk, E. S. Cheb, “The Cauchy problem for a fourth-order equation with a bi-wave operator”, Differential Equations, 43 (2007), 688–695  crossref  mathscinet  zmath
5. V. Korzyuk, O. Konopelko, E. Cheb, “Boundary-value problems for fourth-order equations of hyperbolic and composite types”, Journal of Mathematical Sciences, 171 (2010), 89–115  crossref  mathscinet  zmath
6. Korzyuk V. I., Vinh N. V., Minh N. T., “Classical solution of the Cauchy problem for biwave equation: Application of Fourier transform”, Mathematical Modelling and Analysis, 17:5 (2012), 630–641  crossref  mathscinet  zmath
7. Korzyuk V. I., Vinh N. V., “Classical solutions of mixed problems for the one-dimensional biwave equation”, Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series, 2016, no. 1, 69–79 (In Russian)
8. Korzyuk V. I., Vinh N. V., “Classical solution of a problem with an integral condition for the one-dimensional biwave equation”, Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series, 2016, no. 3, 16–29 (In Russian)
9. Korzyuk V. I., Vinh N. V., “Cauchy problem for some fourth-order nonstrictly hyperbolic equations”, Nanosystems: Physics, Chemistry, Mathematics, 7:5 (2016), 869–879  crossref  zmath
10. V. I. Korzyuk, N. V. Vinh, N. T. Minh, “Conservation law for the Cauchy-Navier equation of elastodynamics wave via Fourier transform”, Tr. Inst. Mat., 24:1 (2016), 100–106  mathscinet
11. N. I. Muskhelishvili, Some basic problems of the mathematical theory of elasticity, Noordhoff International Publishing, 2010  mathscinet
12. Elena Obolashvili, Higher Order Partial Differential Equations in Clifford Analysis: Effective Solutions to Problems, Birkhauser, Basel, 2003  mathscinet  zmath


© Steklov Math. Inst. of RAS, 2025