|
|
|
Список литературы
|
|
|
1. |
Делоне Б., Падуров Н., Александров А., Математические основы структурного анализа кристаллов и определение основного параллелепипеда повторяемости при помощи рентгеновских лучей, ОНТИ–ГТТИ, Л.; М., 1934 |
2. |
Делоне Б.Н., Долбилин Н.П., Штогрин М.И., Галиулин Р.В., “Локальный критерий правильности системы точек”, ДАН СССР, 227:1 (1976), 19–21 ; Delone B.N., Dolbilin N.P., Shtogrin M.I., Galiulin R.V., “A local criterion for regularity of a system of points”, Sov. Math. Dokl., 17:2 (1976), 319–322 |
3. |
Dolbilin N.P., Lagarias J.C., Senechal M., “Multiregular point systems”, Discrete Comput. Geom., 20:4 (1998), 477–498 |
4. |
Dolbilin N., Schulte E., “The local theorem for monotypic tilings”, Electron. J. Comb., 11:2 (2004), Pap. R7 |
5. |
Shechtman D., Blech I., Gratias D., Cahn J.W., “Metallic phase with long-range orientational order and no translational symmetry”, Phys. Rev. Lett., 53:20 (1984), 1951–1954 |
6. |
http://reference.iucr.org/dictionary/Crystal |
7. |
Bak P., “Icosahedral crystals: Where are the atoms?”, Phys. Rev. Lett., 56:8 (1986), 861–864 |
8. |
de Bruijn N.G., “Algebraic theory of Penrose's non-periodic tilings of the plane. I, II”, Indag. Math., 43 (1981), 39–52 |
9. |
Senechal M., Quasicrystals and geometry, Cambridge Univ. Press, Cambridge, 1996 |
10. |
Lagarias J.C., “Geometric models for quasicrystals. I: Delone sets of finite type”, Discrete. Comput. Geom., 21:2 (1999), 161–191 |
11. |
Strungaru N., “Almost periodic measures and long-range order in Meyer sets”, Discrete Comput. Geom., 33:3 (2005), 483–505 |
12. |
Takakura H., Gómez C.P., Yamamoto A., De Boissieu M., Tsai A.P., “Atomic structure of the binary icosahedral Yb–Cd quasicrystal”, Nature Mater., 6 (2007), 58–63 |
13. |
Senechal M., Taylor J.E., “Quasicrystals: The view from Stockholm”, Math. Intell., 35:2 (2013), 1–9 |
14. |
Keys A.S., Glotzer S.C., “How do quasicrystals grow?”, Phys. Rev. Lett., 99:23 (2007), 235503 |
15. |
Engel M., Damasceno P.F., Phillips C.L., Glotzer S.C., “Computational self-assembly of a one-component icosahedral quasicrystal”, Nature Mater., 14 (2015), 109–116 |
16. |
Harriss E., Frettlöh D., Tilings encyclopedia http://tilings.math.uni-bielefeld.de/ |
17. |
Baake M., Grimm U., Aperiodic order. V. 1: A mathematical invitation, Cambridge Univ. Press, Cambridge, 2013 |
18. |
Mackay A.L., “A dense non-crystallographic packing of equal spheres”, Acta crystallogr., 15 (1962), 916–918 |
19. |
Extended icosahedral structures, Aperiodicity and Order, 3, eds. M.V. Jarić, D. Gratias, Acad. Press, Boston, MA, 1989 |
20. |
Gratias D., Puyraimond F., Quiquandon M., Katz A., “Atomic clusters in icosahedral $F$-type quasicrystals”, Phys. Rev. B., 63:2 (2001), 024202 |
21. |
Kuhn T.S., The structure of scientific revolutions, Univ. Chicago Press, Chicago, 1962 |
22. |
Megaw H.D., “The domain of crystallography”, Historical atlas of crystallography, eds. J. Lima-de-Faria, Kluwer, Dordrecht, 1990, 137–140 |